0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

快充锂离子电池在高温和低温下恶化行为的差异

清新电源 ? 来源:清新电源 ? 2022-12-22 09:32 ? 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

【研究背景】

锂离子二次电池(LIB)因其高工作电压、高能量密度、高功率特性和长循环寿命等特性而被用作各种设备的电源,包括智能手机和电动汽车。当在低于室温下进行高倍率充电时,电池石墨负极表面析锂非常严重,不利于锂离子嵌入石墨层。因此,锂离子电池在低温快速充放电后容量会发生明显的衰减。研究LIB在高倍率和不同工作温度范围条件下的恶化行为至关重要。

【工作简介】

近日,日本长冈技术科学大学Minoru Umeda团队分析了锂离子电池在高温和低温下快充电性能恶化的机理和差异。作者通过与充电-放电循环之前的特性进行比较来研究恶化的电化学特性;使用电化学分析和3D X射线计算机断层扫描(CT)对恶化前后进行了分析。实验结果表明高温会影响阴极,而在低温影响阳极。相关工作以“Differences in the deterioration behaviors of fast-charged lithium-ion batteries at high and low temperatures”为题发表在国际期刊Journal of Power Sources上。

【文章详情】

0e6e0316-8181-11ed-8abf-dac502259ad0.png

图1. (a)在不同温度和倍率下通过差分电容分析恶化前后容量;(b)在不同温度和倍率下通过差分电容分析循环10圈后的恶化前后容量。

作者通过在高温和低温下以不同的充电速率进行循环来研究快速充电 LIB在其安全温度范围之外的恶化行为。恶化前后的微分容量曲线结果表明与高温下的恶化相比,低温下循环的电池容量变化要大于高温下的变化。此外,0℃下0.7C充电率下电池容量下降最多。

0e85aca0-8181-11ed-8abf-dac502259ad0.png

图2. 在不同温度下以(a) 0.7C、(b) 1.0C和 (c) 1.3C充电条件下的充电曲线;在不同温度下(d) 0.7C、(e)1.0C和(f)1.3C 充电对应的0.2C放电的放电曲线。

通过分析在高恶化温度下以不同充电倍率的第1次和第10次循环的充电曲线得出在高温下循环恶化前后的充电曲线几乎没有变化。但是当锂离子电池在低温下充电时,低温下的高充电率可能会促进镀锂。测试结果表明:与高温下相比,低温下的高充电率可能会促进镀锂,因此低温恶化10次后各电池放电容量下降更为明显。

0ebdeb6a-8181-11ed-8abf-dac502259ad0.png

图3. (a)未恶化的电池在25摄氏度下以0.05C倍率下测量的特征微分容量曲线;(b)利用从新电池中取出的阴极和阳极活性材料组装的电化学电池的特征微分容量曲线。

作者通过分析充放电过程中微分容量曲线的峰值变化得出峰C、D和E 的耦合可能主要归因于阴极的结构变化。此外,图4a所示的峰A和B的耦合主要受电池阳极反应的影响。

0eeef444-8181-11ed-8abf-dac502259ad0.png

图4. 在25摄氏度下测量电池恶化前后的差分容量曲线:充电倍率分别为 (a) 1.3C,(b) 1.0C,和 (c) 0.7C。

比较电池在低温循环恶化前后的微分容量曲线,发现在低温范围内随着温度降低,峰A的高度明显降低,峰C和D略微向更高的电位移动,这表明在每个温度下循环恶化后,电极在充电/放电过程中可能会表现出相变机制异常,并且恶化机制在低温和高温下有所不同。此外,研究还表明在低于室温的温度下进行充放电循环产生的容量衰减可能与负极嵌入的锂离子数量减少有关。

0f07fc1e-8181-11ed-8abf-dac502259ad0.png

图5. 电池在(a)室温和(b)高温下经过10次充放电循环后的特征电化学阻抗谱。不同温度下电池的(c)阳极和(d)阴极电阻

对不同温度下恶化前后的放电电池进行EIS测试分析,发现恶化后的阻抗分量在低温和高温测量之间不同。并且阳极电阻R1的值在高温下较低,恶化前后变化不大;但其在在低温下的值较高,并且在充放电之前电阻随着温度降低而增加。因此,高温下电阻增加可能与阴极有关。

0f3c9604-8181-11ed-8abf-dac502259ad0.png

图6. 不同恶化条件的 Arrhenius 图。

作者通过计算恶化前后的Ea来确定电池在不同温度下的恶化机制。在高温(60-80摄氏度)下电池恶化的活化能为正值,在0.7C至1.3C的充电速率下活化能值为57.79-90.39 kJ/mol。相比之下,在低温下(0-25摄氏度)恶化的活化能为负值,低温时恶化反应随温度降低而加快。由于反应机理与活化能相关,因此高温和低温下循环恶化的机理不同。

0f515cd8-8181-11ed-8abf-dac502259ad0.png

图7. 电池的X射线计算机断层扫描图像:(a)新电池和(b)在0摄氏度,0.7C倍率下老化。

本研究中观察到的容量衰减主要是由于石墨阳极的部分失活和电极电阻的增加,这是通过电化学测量确定的。此外,有必要研究电极的机械变化,如机械变形,是否在老化后表现出来。因此,作者对新电池和恶化最明显的电池进行了X射线CT测试。结果表明在恶化过程中产生的可通过SEM确认的SEI的量很少,并且在电极中没有观察到导致恶化后容量衰减的机械变化。

关于恶化的机制,作者认为如下:

当LIB在高温下使用时,充放电后恶化电池的正极界面会形成固体电解质界面(SEI)层。此外,高温会导致电池显著退化,包括锂离子电池阴极材料的开裂。相反,阳极材料在高温下储存后显示出较少的变化。因此,正极中的 SEI 层和裂纹可能会降低电导率,并使电极内的锂离子嵌入/脱嵌变得不那么有利。使用 X 射线 CT 无法确认电池卷中存在明显的机械裂纹。然而,电极上的活性物质颗粒可能会产生细裂纹。阴极的合成电阻增加,恶化后观察到高过电压这是阴极恶化的主要机制,它会在高温循环恶化期间降低电池容量。

根据充电/放电曲线,当电池在低温下以高速率充电时,Li可能会镀到负极上。首先,锂金属会消耗电解液中的锂离子,经过10次充放电循环后,负极上的锂金属就会被剥离。尽管在负极上镀锂可能会降低低温下的容量,但随着循环的增加,镀锂可能会部分返回电解质,并再次有助于电池的容量。因此,低温下容量衰减的主要原因不是Li镀层,而是由于Li镀层引起的SEI形成。沉积在阳极上锂金属的费米能级高于电解质的最低未占据分子轨道,从而有可能通过减少电解质的热力学驱动力形成新的(二次)SEI层。此外,生成二次SEI的反应是决速步骤,很容易在低温下发生。此外,低温有利于锂离子沉积成为锂金属,二次SEI的反应物的量可能增加。综上所述,低温促进了锂金属在充放电过程中形成二次SEI层,从而降低了电池的容量。

【结果与展望】

在这项研究中,在高温和低温下对电池进行高充电率测试,阐明了当LIBs在高功率和安全温度范围之外充电时恶化的机制。Ea恶化值证实电池恶化的机制在高温和低温下不同。高温下的恶化影响阴极,低温下的恶化影响阳极。在高温条件下,电解质和阴极之间的反应可能会产生主要的SEI层,不利于锂离子在阴极内的嵌入,从而导致阴极电阻和与阴极反应相关的过电压增加。在低于室温的温度下,电解质与沉积在负极上的金属锂之间的反应会产生二次SEI层,消耗电池内的锂离子并导致容量衰减。

审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 锂离子电池
    +关注

    关注

    85

    文章

    3497

    浏览量

    79271
  • 电源
    +关注

    关注

    185

    文章

    18429

    浏览量

    257425
  • 能量密度
    +关注

    关注

    6

    文章

    289

    浏览量

    17008

原文标题:快充锂离子电池在高温和低温下恶化行为的差异

文章出处:【微信号:清新电源,微信公众号:清新电源】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    锂离子电池的原理与材料全解析

    锂离子电池作为现代储能领域的核心技术,其高效稳定的能量转换能力支撑着新能源产业的快速发展。美能锂电作为行业创新企业,长期致力于锂离子电池材料研发与工艺优化,其技术突破为动力电池领域的革新提供了重要
    的头像 发表于 08-14 18:02 ?205次阅读
    <b class='flag-5'>锂离子电池</b>的原理与材料全解析

    锂离子电池隔膜质量检测与缺陷分析

    全球对可再生能源需求增长,锂离子电池作为关键能源存储技术,其性能和安全性至关重要。隔膜是锂离子电池的核心,其质量影响电池性能。电池的生产、
    的头像 发表于 08-05 17:55 ?53次阅读
    <b class='flag-5'>锂离子电池</b>隔膜质量检测与缺陷分析

    锂离子电池涂布工艺:技术要求与方法选择

    锂离子电池制造领域,涂布工艺是决定电池性能和质量的关键步骤之一。涂布工艺的精确度直接影响到电池的容量、循环寿命以及安全性。随着锂离子电池
    的头像 发表于 08-05 17:55 ?65次阅读
    <b class='flag-5'>锂离子电池</b>涂布工艺:技术要求与方法选择

    锂离子电池焊接工艺的分析解构

    作为现代社会的“能源心脏”锂离子电池的应用涉及相当广泛。锂离子电池的的制作工艺之中,焊接技术是连接其内部组件、确保电池高效运作的的重要环节,直接决定了电池安全性、
    的头像 发表于 08-05 17:49 ?142次阅读
    <b class='flag-5'>锂离子电池</b>焊接工艺的分析解构

    锂离子电池电解液浸润机制解析:从孔隙截留到工艺优化

    锂离子电池制造领域,美能光子湾始终怀揣着推动清洁能源时代加速到来的宏伟愿景,全力助力锂离子电池技术的革新。锂离子电池制造过程中,电解液浸
    的头像 发表于 08-05 17:49 ?194次阅读
    <b class='flag-5'>锂离子电池</b>电解液浸润机制解析:从孔隙截留到工艺优化

    新能源汽车 | 锂离子电池组的电气配置与热管理参数交互影响

    全球电动汽车产业的快速发展,对锂离子电池的安全性、耐久性和能量效率提出了更高要求。电池组的热管理是制约其性能的关键瓶颈——低温环境电化学活性下降、
    的头像 发表于 07-22 18:07 ?106次阅读
    新能源汽车 | <b class='flag-5'>锂离子电池</b>组的电气配置与热管理参数交互影响

    超级电容器与锂离子电池的区别在哪里?

    本文主要讨论了超级电容器和锂离子电池储能方面的差异。超级电容器的体积小、容量大,但能量密度低;而锂离子电池体积大、容量小,但能量密度高。超级电容器的功率密度高,反应速度
    的头像 发表于 07-15 09:32 ?330次阅读
    超级电容器与<b class='flag-5'>锂离子电池</b>的区别在哪里?

    低温启动「破冰术」:聚徽厂家解码安卓工控机-30℃环境电池预热与启动策略

    极寒工业场景(如北方油田、高原风电场)中,安卓工控机需-30℃环境稳定运行,但低温会导致锂离子电池内阻激增、可用能量骤降,甚至触发系统
    的头像 发表于 06-10 10:33 ?348次阅读

    车用锂离子电池机理建模与并联模组不一致性研究

    车用锂离子电池机理建模与并联模组不一致性研究
    发表于 05-16 21:02

    FIB-SEM技术锂离子电池的应用

    锂离子电池材料的构成锂离子电池作为现代能源存储领域的重要组成部分,其性能的提升依赖于对电池材料的深入研究。锂离子电池通常由正极、负极、电解质、隔膜和封装材料等部分构成。正极材料和负极材
    的头像 发表于 02-08 12:15 ?724次阅读
    FIB-SEM技术<b class='flag-5'>在</b><b class='flag-5'>锂离子电池</b>的应用

    锂离子电池和三元锂电池,谁更安全?

    锂离子电池和三元锂电池安全性上各有优劣。锂离子电池凭借其成熟的技术和稳定的性能,安全性方面有着坚实的保障;三元锂
    的头像 发表于 01-23 15:19 ?932次阅读
    <b class='flag-5'>锂离子电池</b>和三元锂<b class='flag-5'>电池</b>,谁更安全?

    智能化进程中的锂离子电池

    。1992年,锂离子电池实现商品化。 ? 锂离子电池 锂离子电池是一种充电电池,它主要依靠锂离子
    的头像 发表于 12-06 10:45 ?1009次阅读

    石墨负极锂离子电池中的发展与储锂机制

    近日,清华大学张强教授团队总结并展望了石墨负极界面的调控方法及其对锂离子电池电化学性能的影响机制,重点介绍了石墨负极锂离子电池中的发展与储锂机制、炭负极的表界面表征方法与界面调控方法,结合目前国内
    的头像 发表于 10-28 11:28 ?3218次阅读
    石墨负极<b class='flag-5'>在</b><b class='flag-5'>锂离子电池</b>中的发展与储锂机制

    使用碳基复合材料提升锂离子电池传输效率

    近年来,锂离子电池便携式电子设备、电动汽车以及储能设备中得到了广泛应用。随着对快速充电和低温环境性能要求的不断提升,传统石墨负极材料逐渐暴露出低倍率性能、低温充电困难等问题。传输路径
    的头像 发表于 10-24 16:26 ?1224次阅读
    使用碳基复合材料提升<b class='flag-5'>锂离子电池</b>传输效率

    便携式应用中使用镍氢电池锂离子电池

    电子发烧友网站提供《便携式应用中使用镍氢电池锂离子电池.pdf》资料免费下载
    发表于 10-24 09:35 ?0次下载
    <b class='flag-5'>在</b>便携式应用中使用镍氢<b class='flag-5'>电池</b>和<b class='flag-5'>锂离子电池</b>