0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

利用谷歌的神经网络模型找到了“迷你太阳系”

mK5P_AItists ? 2018-01-02 08:53 ? 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

概要:当地时间12月15日,美国国家航空航天局NASA宣布在“行星猎手”开普勒望远镜的数据库中找到了恒星“开普勒-90”周围的第八颗行星,追平太阳系。

一个恒星周围最多环绕几颗恒星?一直以来,太阳系就是人类所知的行星数量最多的星系。当地时间12月15日,美国国家航空航天局NASA宣布在“行星猎手”开普勒望远镜的数据库中找到了恒星“开普勒-90”周围的第八颗行星,追平太阳系。该星系远在2545光年外的天龙座,八大行星相互距离压缩得更近,俨然是迷你版的太阳系。

这项发现用到了谷歌的神经网络模型。

“开普勒-90”和太阳系一样拥有八大行星 本文图片均来自 NASA

通过神经网络模型,人工智能可以进行深度学习,即利用大量匹配的输入-输出值训练计算机,使之自行发掘数据中的特征。这种曾令AlphaGo在棋盘上大杀四方的人工智能模型,如今开始在天文物理的海量数据中发挥用处。或许正应了那句传言:围棋的变化组合,比宇宙中的原子数还要多。

发现新行星的方法是观察“凌日”现象,即行星掠经恒星表面时,会造成恒星亮度的下降。

“凌日”现象

2009年,“行星猎手”开普勒望远镜承载着人类寻找“第二地球”的梦想升空。它在2013年因“瘫痪”——一次严重的硬件故障结束了猎捕系外行星的任务,朝同一个方向凝视了4年。最近,NASA计划让它每80天转动一下角度。

在“瘫痪”前的四年,开普勒望远镜积累了浩繁的数据。这份数据库对科学家来说几乎是难以穷尽的富矿。目前,人类从中找出了超过4000颗疑似的系外行星。

漏网之鱼肯定存在。

已知恒星系统的行星数

克利斯朵夫·肖乐(Christopher Shallue)是谷歌人工智能团队的一名资深软件工程师,当他了解到天文学正在和许多其他学科一样被大数据淹没时,他想到了要用神经网络分析开普勒数据库。

首先,研究者训练计算机对人类已经分析过的15000个开普勒信号进行训练,当计算机能以96%的准确率识别凌日信号后,研究者用这个模型搜寻670个多行星系统中微弱的信号。他们认为,多行星的星系是寻找更多系统行星的最佳地点。

合作发现者NASA博士后安德鲁·范登堡( Andrew Vanderburg)说道:“我们得到了许多假阳性信号,但真阳性更多。这就像沙中淘金。如果你用的网格更密,你会淘到更多的沙,但也可能淘到更多的金。”

肖乐和范登堡下一步打算用人工智能模型将整个开普勒数据库筛一遍。里面包含超过15万个信号。

开普勒之前(蓝色)和开普勒(黄色)发现的系外行星

“正如我们所料,存档的开普勒数据中还藏着许多激动人心的发现,静待合适的技术解锁。”NASA天文物理部主任保罗·赫兹(Paul Hertz)说道。“这项发现意味着,我们的数据在未来可以成为研究者们的宝库。”

新发现的“开普勒-90”第八行星——“开普勒-90i”是一颗灼热的岩石星球,公转周期14.4天。它比地球大30%,非常靠近恒星,表面温度与水星相当。

而“开普勒-90”系统最外围的行星,“开普勒-90h”,轨道距离与地球相当。

“开普勒-90星系就像迷你版太阳系:里圈有小点的行星,外圈有大点的行星,但距离压缩得更近,”范登堡说道。

迷你版太阳系:行星间距更近

除此之外,“开普勒-90”第六行星“开普勒-90g”也是通过这个人工智能模型找到的。它和四个比邻行星的相互重力形成了谐振链,异常稳定,如同此前发现的“葫芦娃”七行星系统TRAPPIST-1。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 谷歌
    +关注

    关注

    27

    文章

    6233

    浏览量

    108552
  • 神经网络
    +关注

    关注

    42

    文章

    4814

    浏览量

    104460
  • 人功智能
    +关注

    关注

    0

    文章

    1

    浏览量

    1133

原文标题:谷歌人工智能检索开普勒望远镜数据后,找到了“迷你太阳系”

文章出处:【微信号:AItists,微信公众号:人工智能学家】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    无刷电机小波神经网络转子位置检测方法的研究

    摘要:论文通过对无刷电机数学模型的推导,得出转角:与三相相电压之间存在映射关系,因此构建了一个以三相相电压为输人,转角为输出的小波神经网络来实现转角预测,并采用改进遗传算法来训练网络结构与参数,借助
    发表于 06-25 13:06

    神经网络专家系统在电机故障诊断中的应用

    的诊断误差。仿真结果验证了该算法的有效性。 纯分享帖,需要者可点击附件免费获取完整资料~~~*附件:神经网络专家系统在电机故障诊断中的应用.pdf【免责声明】本文网络转载,版权归原作者所有。本文所用视频、图片、文字如涉及作品版
    发表于 06-16 22:09

    神经网络RAS在异步电机转速估计中的仿真研究

    众多方法中,由于其结构简单,稳定性好广泛受到人们的重视,且已被用于产品开发。但是MRAS仍存在在低速区速度估计精度下降和对电动机参数变化非常敏感的问题。本文利用神经网络的特点,使估计更为简单、快速
    发表于 06-16 21:54

    基于FPGA搭建神经网络的步骤解析

    本文的目的是在一个神经网络已经通过python或者MATLAB训练好的神经网络模型,将训练好的模型的权重和偏置文件以TXT文件格式导出,然后通过python程序将txt文件转化为coe
    的头像 发表于 06-03 15:51 ?504次阅读
    基于FPGA搭建<b class='flag-5'>神经网络</b>的步骤解析

    BP神经网络与卷积神经网络的比较

    BP神经网络与卷积神经网络在多个方面存在显著差异,以下是对两者的比较: 一、结构特点 BP神经网络 : BP神经网络是一种多层的前馈神经网络
    的头像 发表于 02-12 15:53 ?822次阅读

    如何优化BP神经网络的学习率

    优化BP神经网络的学习率是提高模型训练效率和性能的关键步骤。以下是一些优化BP神经网络学习率的方法: 一、理解学习率的重要性 学习率决定了模型参数在每次迭代时更新的幅度。过大的学习率可
    的头像 发表于 02-12 15:51 ?1053次阅读

    BP神经网络的优缺点分析

    BP神经网络(Back Propagation Neural Network)作为一种常用的机器学习模型,具有显著的优点,同时也存在一些不容忽视的缺点。以下是对BP神经网络优缺点的分析: 优点
    的头像 发表于 02-12 15:36 ?1045次阅读

    BP神经网络与深度学习的关系

    BP神经网络与深度学习之间存在着密切的关系,以下是对它们之间关系的介绍: 一、BP神经网络的基本概念 BP神经网络,即反向传播神经网络(Backpropagation Neural N
    的头像 发表于 02-12 15:15 ?985次阅读

    如何训练BP神经网络模型

    BP(Back Propagation)神经网络是一种经典的人工神经网络模型,其训练过程主要分为两个阶段:前向传播和反向传播。以下是训练BP神经网络
    的头像 发表于 02-12 15:10 ?1028次阅读

    深度学习入门:简单神经网络的构建与实现

    深度学习中,神经网络是核心模型。今天我们用 Python 和 NumPy 构建一个简单的神经网络神经网络由多个神经元组成,
    的头像 发表于 01-23 13:52 ?598次阅读

    人工神经网络的原理和多种神经网络架构方法

    在上一篇文章中,我们介绍了传统机器学习的基础知识和多种算法。在本文中,我们会介绍人工神经网络的原理和多种神经网络架构方法,供各位老师选择。 01 人工神经网络 ? 人工神经网络
    的头像 发表于 01-09 10:24 ?1391次阅读
    人工<b class='flag-5'>神经网络</b>的原理和多种<b class='flag-5'>神经网络</b>架构方法

    卷积神经网络与传统神经网络的比较

    在深度学习领域,神经网络模型被广泛应用于各种任务,如图像识别、自然语言处理和游戏智能等。其中,卷积神经网络(CNNs)和传统神经网络是两种常见的模型
    的头像 发表于 11-15 14:53 ?2030次阅读

    深度学习中的卷积神经网络模型

    深度学习近年来在多个领域取得了显著的进展,尤其是在图像识别、语音识别和自然语言处理等方面。卷积神经网络作为深度学习的一个分支,因其在图像处理任务中的卓越性能而受到广泛关注。 卷积神经网络的基本概念
    的头像 发表于 11-15 14:52 ?927次阅读

    RNN模型与传统神经网络的区别

    神经网络是机器学习领域中的一种强大工具,它们能够模拟人脑处理信息的方式。随着技术的发展,神经网络的类型也在不断增加,其中循环神经网络(RNN)和传统神经网络(如前馈
    的头像 发表于 11-15 09:42 ?1268次阅读

    matlab 神经网络 数学建模数值分析

    matlab神经网络 数学建模数值分析 精通的可以讨论下
    发表于 09-18 15:14