0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

深度学习入门:简单神经网络的构建与实现

jf_18664067 ? 来源:jf_18664067 ? 作者:jf_18664067 ? 2025-01-23 13:52 ? 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

深度学习中,神经网络是核心模型。今天我们用 Python 和 NumPy 构建一个简单的神经网络。

神经网络由多个神经元组成,神经元之间通过权重连接。我们构建一个包含输入层、隐藏层和输出层的简单神经网络。

首先,导入必要的库:

收起

python

import numpy as np

定义激活函数 Sigmoid:

收起

python

def sigmoid(x):
    return 1 / (1 + np.exp(-x))

定义神经网络的结构和参数初始化:

收起

python

# 输入层节点数
input_size = 2
# 隐藏层节点数
hidden_size = 3
# 输出层节点数
output_size = 1

# 初始化权重,使用随机数
weights1 = np.random.randn(input_size, hidden_size)
weights2 = np.random.randn(hidden_size, output_size)

前向传播函数:

收起

python

def forward_propagation(inputs):
    hidden_layer = sigmoid(np.dot(inputs, weights1))
    output_layer = sigmoid(np.dot(hidden_layer, weights2))
    return output_layer

假设我们有一个输入数据:

收起

python

# 示例输入
inputs = np.array([0.5, 0.3])
output = forward_propagation(inputs)
print(f"神经网络的输出: {output}")

在这个简单的神经网络中,输入数据通过权重矩阵与隐藏层和输出层进行计算,经过激活函数处理后得到最终输出。虽然这只是一个简单的示例,但理解其原理是深入学习深度学习的基础。

审核编辑 黄宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4814

    浏览量

    104070
  • 深度学习
    +关注

    关注

    73

    文章

    5564

    浏览量

    122949
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    如何优化BP神经网络学习

    优化BP神经网络学习率是提高模型训练效率和性能的关键步骤。以下是一些优化BP神经网络学习率的方法: 一、理解学习率的重要性
    的头像 发表于 02-12 15:51 ?993次阅读

    BP神经网络的优缺点分析

    学习能力 : BP神经网络能够通过训练数据自动调整网络参数,实现对输入数据的分类、回归等任务,无需人工进行复杂的特征工程。 泛化能力强 : BP
    的头像 发表于 02-12 15:36 ?988次阅读

    BP神经网络深度学习的关系

    BP神经网络深度学习之间存在着密切的关系,以下是对它们之间关系的介绍: 一、BP神经网络的基本概念 BP神经网络,即反向传播
    的头像 发表于 02-12 15:15 ?915次阅读

    人工神经网络的原理和多种神经网络架构方法

    在上一篇文章中,我们介绍了传统机器学习的基础知识和多种算法。在本文中,我们会介绍人工神经网络的原理和多种神经网络架构方法,供各位老师选择。 01 人工神经网络 ? 人工
    的头像 发表于 01-09 10:24 ?1300次阅读
    人工<b class='flag-5'>神经网络</b>的原理和多种<b class='flag-5'>神经网络</b>架构方法

    卷积神经网络实现工具与框架

    卷积神经网络因其在图像和视频处理任务中的卓越性能而广受欢迎。随着深度学习技术的快速发展,多种实现工具和框架应运而生,为研究人员和开发者提供了强大的支持。 TensorFlow 概述
    的头像 发表于 11-15 15:20 ?704次阅读

    卷积神经网络与传统神经网络的比较

    深度学习领域,神经网络模型被广泛应用于各种任务,如图像识别、自然语言处理和游戏智能等。其中,卷积神经网络(CNNs)和传统神经网络是两种常
    的头像 发表于 11-15 14:53 ?1944次阅读

    深度学习中的卷积神经网络模型

    深度学习近年来在多个领域取得了显著的进展,尤其是在图像识别、语音识别和自然语言处理等方面。卷积神经网络作为深度学习的一个分支,因其在图像处理
    的头像 发表于 11-15 14:52 ?875次阅读

    RNN模型与传统神经网络的区别

    神经网络是机器学习领域中的一种强大工具,它们能够模拟人脑处理信息的方式。随着技术的发展,神经网络的类型也在不断增加,其中循环神经网络(RNN)和传统
    的头像 发表于 11-15 09:42 ?1184次阅读

    LSTM神经网络与其他机器学习算法的比较

    神经网络 原理 LSTM是一种时间递归神经网络,能够学习长期依赖信息。它通过引入门控机制(输入门、遗忘门、输出门)来控制信息的流动,从而解决
    的头像 发表于 11-13 10:17 ?2198次阅读

    深度学习框架中的LSTM神经网络实现

    长短期记忆(LSTM)网络是一种特殊的循环神经网络(RNN),能够学习长期依赖信息。与传统的RNN相比,LSTM通过引入门控机制来解决梯度消失和梯度爆炸问题,使其在处理序列数据时更为有
    的头像 发表于 11-13 10:16 ?1111次阅读

    如何使用Python构建LSTM神经网络模型

    构建一个LSTM(长短期记忆)神经网络模型是一个涉及多个步骤的过程。以下是使用Python和Keras库构建LSTM模型的指南。 1. 安装必要的库 首先,确保你已经安装了Python和以下库
    的头像 发表于 11-13 10:10 ?1648次阅读

    LSTM神经网络在语音识别中的应用实例

    语音识别技术是人工智能领域的一个重要分支,它使计算机能够理解和处理人类语言。随着深度学习技术的发展,特别是长短期记忆(LSTM)神经网络的引入,语音识别的准确性和效率得到了显著提升。 LSTM
    的头像 发表于 11-13 10:03 ?1903次阅读

    LSTM神经网络在时间序列预测中的应用

    时间序列预测是数据分析中的一个重要领域,它涉及到基于历史数据预测未来值。随着深度学习技术的发展,长短期记忆(LSTM)神经网络因其在处理序列数据方面的优势而受到广泛关注。 LSTM神经网络
    的头像 发表于 11-13 09:54 ?2113次阅读

    LSTM神经网络的基本原理 如何实现LSTM神经网络

    LSTM(长短期记忆)神经网络是一种特殊的循环神经网络(RNN),它能够学习长期依赖信息。在处理序列数据时,如时间序列分析、自然语言处理等,LSTM因其能够有效地捕捉时间序列中的长期依赖关系而受到
    的头像 发表于 11-13 09:53 ?1653次阅读

    Moku人工神经网络101

    不熟悉神经网络的基础知识,或者想了解神经网络如何优化加速实验研究,请继续阅读,探索基于深度学习的现代智能化实验的广阔应用前景。什么是神经网络
    的头像 发表于 11-01 08:06 ?710次阅读
    Moku人工<b class='flag-5'>神经网络</b>101