0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

盐可用于电池电极并提升电容

ss ? 来源:电源新事 ? 作者:电源新事 ? 2020-12-11 16:10 ? 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

一点点盐就可以增加电池性能?听起来像是个天方夜谭,但这是伦敦玛丽王后大学、剑桥大学与马克斯普朗克固体物理和材料研究所共同研究成果,只要在超分子海绵加入盐并加以碳化,就可以打造 3D 多层碳结构,可用于电池电极并提升电容

科学家研究发现把盐放入超分子海绵,并置于高温烘烤环境,就可以把海绵变成碳基结构。其中盐会以特殊方式与金属海绵发生反应,将海绵从均质物质变成具有纤维、支架和网状物的复杂结构,这种 3D 碳结构当作电池负极时对可促进电解质离子迁移,但难以在实验室中制造。

根据其在《美国化学会志》(Journal of the American Chemical Society)研究,假如在锂离子电池使用该材料,不仅可以提高电池充电速度,电容量也可以增加。而由于自然界的硅藻也存有复杂结构,研究员将该材料命名为「纳米硅藻(nano-diatoms)」,并且认为纳米硅藻也可用于储能与能源转换,像是氢燃料的电催化剂。

伦敦玛丽王后大学工程与材料科学学院 Stoyan Smoukov 博士说,只有将化合物加热到摄氏 800 度时才会发生这种变态(metamorphosis),而团队也发现可以利用改变化学组成来控制碳化。

多阶层结构的 3D 碳基纳米结构不仅拥有良好导电性等物理性质,也可以制成轻型结构材料或是改善碳材料浸润性(wettability)促进离子流动。但制造 3D 碳基纳米结构非常难,何况还要以简单方式制成。

研究使用的超分子海绵为一种金属有机框架材料(MOF),该多孔材料具有气体储存等应用潜力。一般来说 MOF 海绵碳化后表面积会增加,可成为电极材料生力军,只是研究发现碳化的 MOF 仅会形成无规则碳衍生物。所幸最后团队发现在 MOF 海绵加盐碳化后,可将无规则碳衍生物摇身一变成复杂且有秩序的多层碳基材料。

剑桥大学能源研究所博士 R. Vasant Kumar 表示,这项研究将 MOF 应用推向另一阶段。该多层碳基材料制造方法未来不仅可用在储能技术,也可以用于能源转换和化学感测。

剑桥大学博士生王铁胜指出,由于可用的 MOF 和金属盐种类非常多,研究拥有千上万种排列组合,或许未来团队也会透过另一种材料与结构来制造纳米硅藻。(来源:Technews科技新报)

责任编辑:xj

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 性能
    +关注

    关注

    0

    文章

    276

    浏览量

    19430
  • 电池
    +关注

    关注

    84

    文章

    11132

    浏览量

    137864
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    电极压实密度对锂离子电池性能的影响探究

    在锂离子电池技术飞速发展的当下,无论是驱动电动汽车的动力电池,还是为各类便携设备提供能量的小型电池,其性能的提升始终是研究的重点。电极压实密
    的头像 发表于 08-05 17:50 ?153次阅读
    <b class='flag-5'>电极</b>压实密度对锂离子<b class='flag-5'>电池</b>性能的影响探究

    锂离子电池多孔电极的电化学性能研究

    在锂离子电池能量密度与功率特性的迭代升级中,多孔电极的电化学性能已成为核心制约因素。多孔电极的三维孔隙结构通过调控离子传输路径、反应界面面积等参数,直接决定电池的充放电效率与循环寿命。
    的头像 发表于 08-05 17:47 ?226次阅读
    锂离子<b class='flag-5'>电池</b>多孔<b class='flag-5'>电极</b>的电化学性能研究

    固态电池测试套件

    电极压实与界面优化,加速工艺突破 测试流程 首先将固态粉末放入STBE-SF10固态扣式电池装置 STBE-SF10固态扣式电池装置是一款应用于固态
    发表于 07-25 17:15

    固态电池和超级电容器的区别

    固态电池与超级电容器,通过离子搬运工到电荷仓库的物理博弈,固态电池实现单位时间内运送的乘客数量和续航里程提升,而超级电容器则追求瞬时吞吐效率
    的头像 发表于 07-12 09:26 ?386次阅读
    固态<b class='flag-5'>电池</b>和超级<b class='flag-5'>电容</b>器的区别

    ?车规电容雾测试:沿海地区智能车载设备的防腐设计指南

    沿海地区的高雾环境对车载电容的金属电极与封装材料造成严重腐蚀威胁,传统电容雾测试(5% NaCl)500小时后容值衰减>5%、绝缘电阻
    的头像 发表于 05-22 15:15 ?233次阅读
    ?车规<b class='flag-5'>电容</b><b class='flag-5'>盐</b>雾测试:沿海地区智能车载设备的防腐设计指南

    新能源汽车超级电容器综述

    新能源汽车超级电容器综述超级电容器是介于蓄电池和传统静电电容器之间的一种新型储能装置,它是一种具有超级储电能力、可提供强大脉冲功率的物理二次电源。超级
    的头像 发表于 02-26 13:30 ?749次阅读
    新能源汽车超级<b class='flag-5'>电容</b>器综述

    法拉电容具有高能量密度和高功率密度的特点,广泛应用于以下领域

    法拉电容具有高能量密度和高功率密度的特点,广泛应用于以下领域:1.电子设备:法拉电容可用于移动设备、电子手表、智能手机等电子产品中,用于储存
    的头像 发表于 02-26 13:28 ?631次阅读
    法拉<b class='flag-5'>电容</b>具有高能量密度和高功率密度的特点,广泛应<b class='flag-5'>用于</b>以下领域

    新能源汽车超级电容器?

    新能源汽车超级电容器?超级电容器是介于蓄电池和传统静电电容器之间的一种新型储能装置,它是一种具有超级储电能力、可提供强大脉冲功率的物理二次电源。超级
    的头像 发表于 02-26 10:41 ?1361次阅读
    新能源汽车超级<b class='flag-5'>电容</b>器?

    中性雾试验的标准

    雾试验作为一种重要的腐蚀试验方法,广泛应用于评估材料、涂层及产品的耐雾腐蚀性能。GB/T10125-2012《人造气氛腐蚀试验雾试验》、GB/T2423.17-2008《电工电子
    的头像 发表于 02-14 12:48 ?960次阅读
    中性<b class='flag-5'>盐</b>雾试验的标准

    固态电池电极与界面研究新进展:固态大牛最新Chem. Rev.综述

    成果简介 固态电池(SSBs)有望提供更高的能量密度和安全性,但与传统使用液体电解质的电池相比,固态电池内部电极材料及其界面的演变和退化行为具有独特性,这成为其性能
    的头像 发表于 02-10 10:44 ?1022次阅读
    固态<b class='flag-5'>电池</b><b class='flag-5'>电极</b>与界面研究新进展:固态大牛最新Chem. Rev.综述

    超级电容电池的工作原理

    超级电容电池是一种介于传统电容器与电池之间的新型储能装置。其工作原理主要基于电荷分离和电场存储,以下是关于超级电容
    的头像 发表于 01-27 11:17 ?1324次阅读

    超级电容电池是由什么组成_超级电容电池的应用

    超级电容电池主要由以下几个关键部分组成:   电极:超级电容电池电极通常采用活性炭材料制
    的头像 发表于 01-27 11:16 ?1146次阅读

    法拉电容电池的比较

    在现代能源存储技术中,法拉电容电池是两种常见的储能解决方案。它们各自在不同的应用场景中发挥着重要作用。 1. 工作原理 法拉电容: 法拉电容的工作原理基于电荷的物理存储。它们通过在
    的头像 发表于 01-19 09:31 ?1190次阅读

    法拉电容的容量分类

    电容的工作原理基于电荷的物理存储,而不是像电池那样的化学反应。它们由两个电极和一个电解质组成,电荷存储在电极和电解质之间的界面上。这种设计使得法拉
    的头像 发表于 01-19 09:18 ?1158次阅读

    极间电容和耦合电容怎么判断

    极间电容和耦合电容是电子电路中常见的电容类型,它们在电路中起着不同的作用。极间电容通常指的是两个电极之间的
    的头像 发表于 09-27 10:38 ?3075次阅读