0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

下一代SDR收发器,所用算法是重要方面

贸泽电子设计圈 ? 来源:互联网 ? 作者:佚名 ? 2017-09-18 10:04 ? 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

优势”总是和“挑战”站在一起,

即使被称为

“下一代SDR收发器中的黑魔法”,

“零中频”现在也面临一个亟待克服的挑战——

发射本振泄漏,简称“发射LOL”。

未校正的发射LOL会在所需发射范围内产生无用发射,造成潜在的违反系统规范的风险。本文论述发射LOL的问题,并介绍在ADI的RadioVerse? 收发器系列中实现的可消除此问题的技术。如果可以将发射LOL降低到足够低的水平,使其不再导致系统或性能问题,也许人们就可以不必为LOL问题而烦恼!

什么是LOL?

RF混频器有两个输入端口和一个输出端口,如图1所示。理想混频器将产生一个输出,它是两个输入的乘积。就频率而言,该输出的频率应当是FIN + FLO以及FIN – FLO,不含其它项。如果任一输入不在驱动状态下,则不会有输出。

图1. 理想混频器

在图1中,FIN被设置为基带频率为1 MHz的FBB,FLO被设置为本振频率为500 MHz的FLO。如果是理想混频器,它将产生一个输出,其中包含两个信号音,频率分别为499 MHz和501 MHz。

然而,如图2所示,在FBB和FLO,真实混频器还将产生一些能量。FBB处产生的能量可以忽略不计,因为它远离所需的输出,并且将被混频器输出之后的RF组件滤除。无论FBB处产生的能量如何,FLO下产生的能量都可能是一个问题。它非常接近或在所需的输出信号内,并且很难或无法通过滤波去除,因为滤波也会滤除所需的信号。

图2. 真实混频器

LO应该用小一号或两号的字体下产生的这种无用能量被称为LOL。可驱动混频器的本振 (LO) 已经泄漏到混频器的输出端口。LO还有其他途径可以泄漏到系统输出端,例如通过电源或跨越硅本身。无论本振如何泄漏,其泄漏都可被称为LOL。

在只发射一个边带的实信号中频架构中,可以通过RF滤波解决LOL问题。相比之下,在发射两个边带的零中频架构中,LOL位于所需输出的中间,并形成了难度更高的挑战(见图3)。

图3. FLO下产生的无用能量(以红色显示),FLO下产生的这一无用能量被称为LOL

传统滤波不再是一种选择,因为任何去除LOL的滤波也会去除部分所需发射信号。因此,必须使用其他技术来消除LOL。否则,它最终在整个所需发射范围内可能会成为无用发射。

消除LO泄漏(也称为LOL校正)

生成幅度相等但相位与LOL相反的信号即可实现LOL消除,从而将其抵消,如图4所示。假设我们知道LOL的确切幅度和相位,则可以对发射器输入施加直流失调来生成抵消信号。

图4. LO泄漏和抵消信号

抵消信号的生成

复数混频器架构适用于生成抵消信号。由于混频器中存在LO频率的正交信号(它们是复数混频器如何工作的关键),因此允许生成任何相位和幅度的LO频率信号。

用于驱动复数混频器的正交信号可以描述为Sin(LO)和Cos(LO) —这些是LO频率的正交信号,可以驱动两个混频器。为了生成抵消信号,这些正交信号以不同的权重相加。就数学而言,我们可以产生一个输出,即I × Sin(LO) + Q × Cos(LO)。运用不同的带符号值代替I和Q,得到的和将是LO频率信号,并且可以具有任何所需的幅度和相位。示例如图5所示。

图5. 生成的任何相位和任何幅度抵消信号的示例

所需的发射信号将需要应用于发射器的输入。对发射数据施加直流偏置后,混频器的输出端将包含所需的发射信号以及所需的LOL抵消信号。特意生成的抵消信号将与无用的LOL组合抵消,仅留下 所需的发射信号。

观测发射LOL

如图6所示,使用观测接收器来观测发射LOL。在该示例中,观测接收器使用与发射器相同的LO,因此LO频率的任何发射能量都将在观测接收器的输出端显示为直流。

图6. 观测与校正TxLO泄漏的基本概念

图6所示的方法有其内在缺陷:使用相同的LO来发射和观测,发射LOL将在观测接收器的输出端显示为直流。由于电路中的元件不匹配,观测接收器本身将具有一定量的直流,因此观测接收器的总直流输出将是发射链路中存在的发射LOL与观测链路原生直流失调。有一些方法可以克服这个问题,但是更好的方法是使用不同的LO频率进行观测,从而将观测路径中的原生直流从发射LOL观测结果中分离出来。这种情况如下面的图7所示。

图7. 使用不同LO发射和观测

由于使用了不同于发射LO的频率来观测,因此在观测接收器中,发射LO频率的能量不会以直流出现。相反,它将显示为频率等于发射LO与观测LO之差的基带信号音。观测路径中的原生直流仍然会以直流出现,因此会将观测直流与发射LOL测量结果完全分离。

为简单起见,图8使用单一混频器架构说明了这一概念。在该示例中,发射器的输入为零,因此其唯一输出是发射LOL。频移在观测接收器之后完成,将发射LOL观测到的能量移动到直流。

图8. 从Tx LOL分离观测接收器直流

找出必要的校正值

将观测接收器的输出除以从发射输入到观测接收器输出的传递函数,并将得出的结果与预期发射进行比较,找出所需的校正值。涉及的传递函数如图9所示。

图9. 从发射器输入到观测接收器输出的传递函数

从发射器基带输入到观测接收器基带输出的传递函数由幅度缩放和相位旋转两部分组成。下文对此分别做了更详细的说明。

图10表明如果从发射输出到观测接收器输入的回送路径中具有增益或衰减,或者如果发射器电路的增益与观测接收器电路的增益不同,则观测接收器报告的发射信号的幅度可能不代表所发射信号的实际幅度。

图10. 回送路径衰减引起的幅度缩放

现在来看相位旋转。重要的是要意识到信号不会从点A瞬间传输到点B。例如,信号以约光速的一半速度经过铜,这表示沿铜条传输的3 GHz信号的波长约为5厘米。这意味着如果使用间隔几厘米的多个示波器探头探测铜条,则示波器将显示彼此不同相位的多个信号。图11对这一原理进行了说明,图中所示为沿铜条隔开的三个示波器探头。每个点看到的信号频率为3 GHz,但三个信号之间存在相位差。

图11. 距离与相位的关系,5 cm走线,3 GHz信号,以及0 cm、2 cm和4 cm处的探头点

需要注意的是,沿铜带移动单个示波器探头将不会显示此效应,因为示波器将始终在0°相位触发。只有使用多个探头才能观测到距离与相位之间的关系。

正如沿铜条出现相位变化一样,从发射器输入到观测接收器输出将发生相位变化,如图12所示。LOL校正算法必须知道发生了多少相位旋转,以便计算出正确的校正值。

图12. 回送路径中物理距离引起的相位旋转

确定从发射输入到观测接收器输出的传递函数

施加发射器输入信号并将其与观测接收器的输出进行比较即可得到图13所示的传递函数。但有些要点需要牢记。如果静态 (dc) 信号被施加到发射器输入,它将产生一个发射LO频率的输出,并且发射LOL将与其相结合。这将会妨碍正确得到传递函数。还应注意,发射输出端可以连接到天线,因此故意向发射器输入端施加信号可能是不被允许的。

图13. 确定从发射器输入到观测接收器输出的传递函数

为了解决这些挑战,ADI收发器使用一种将低电平直流失调应用于发射信号的算法。周期性调整失调电平,观测接收器的输出会显示这些扰动。然后,该算法分析比较观测值增量与输入值差值,如表1所示。在该示例中,没有发射用户信号,但是该方法在用户信号存在时仍然适用。

表1. 观测值增量与输入值增量的比较

执行两种情况的减法,从等式中消除恒定发射LOL,即可获得传递函数。可以扩大到两种情形以上,可对许多独立结果取平均值以提高准确性。

小结

LOL校正算法将能学习从发射输入到观测接收器输出的传递函数。然后将观测接收器的输出除以传递函数,得出发射器的输入。将预期发射的直流电平与观测到的发射直流电平进行比较,即可确定发射LOL。最后,该算法将计算消除发射LOL所必需的校正值,并将其作为直流偏置应用于所需的发射数据。

本文概述了ADI的RadioVerse收发器所用算法的一个方面。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 收发器
    +关注

    关注

    10

    文章

    3691

    浏览量

    108513
  • ADI
    ADI
    +关注

    关注

    149

    文章

    46053

    浏览量

    263406
  • SDR
    SDR
    +关注

    关注

    7

    文章

    237

    浏览量

    51276

原文标题:发射本振泄漏!如何破?看这篇就对了!

文章出处:【微信号:Mouser-Community,微信公众号:贸泽电子设计圈】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    下一代高速芯片晶体管解制造问题解决了!

    ,10埃)开始直使用到A7。 从这些外壁叉片晶体管的量产中获得的知识可能有助于下一代互补场效应晶体管(CFET)的生产。 目前,领先的芯片制造商——英特尔、台积电和三星——正在利用其 18A、N2
    发表于 06-20 10:40

    下一代PX5 RTOS具有哪些优势

    许多古老的RTOS设计至今仍在使用,包括Zephyr(1980年)、Nucleus(1990年)和FreeRTOS(2003年)。所有这些旧设计都有专有的API,通常更大、更慢,并且缺乏下一代RTOS的必要安全认证和功能。
    的头像 发表于 06-19 15:06 ?594次阅读

    纳米压印技术:开创下一代光刻的新篇章

    光刻技术对芯片制造至关重要,但传统紫外光刻受衍射限制,摩尔定律面临挑战。为突破瓶颈,下一代光刻(NGL)技术应运而生。本文将介绍纳米压印技术(NIL)的原理、发展、应用及设备,并探讨其在半导体制造中
    的头像 发表于 02-13 10:03 ?2328次阅读
    纳米压印技术:开创<b class='flag-5'>下一代</b>光刻的新篇章

    光纤收发器与IO-Link收发器的区别

    在工业自动化和通信领域,光纤收发器和IO-Link收发器都是关键的通信组件,它们在数据传输、网络扩展和设备连接方面发挥着重要作用。然而,两者在设计、功能、应用场景以及技术特性上存在显著
    的头像 发表于 02-02 15:44 ?651次阅读

    无线收发器工作原理,无线收发器怎么使用

    无线收发器作为现代通信技术的重要组成部分,广泛应用于各个领域,包括无线通信、物联网、远程控制和无线传感网络等。本文将深入探讨无线收发器的工作原理,同时提供详细的使用方法。
    的头像 发表于 01-29 15:31 ?1697次阅读

    影响光纤收发器性能的三大因素

    光纤收发器作为现代通信网络的重要组成部分,发挥着关键的作用。通过有效地解决连接的脏污或损坏、信号衰减以及过热等问题,可以很大程度上提升光纤收发器的稳定性和性能,确保网络的高速、稳定运
    的头像 发表于 12-06 12:13 ?1234次阅读

    意法半导体下一代汽车微控制的战略部署

    汽车的开发。下面就让意法半导体微控制、数字IC和射频产品部(MDRF)总裁Remi EL-OUAZZANE揭秘ST下一代汽车微控制的战略部署。
    的头像 发表于 11-07 14:09 ?963次阅读

    控制当前和下一代功率控制的输入功率

    电子发烧友网站提供《控制当前和下一代功率控制的输入功率.pdf》资料免费下载
    发表于 09-18 11:31 ?0次下载
    控制当前和<b class='flag-5'>下一代</b>功率控制<b class='flag-5'>器</b>的输入功率

    通过电压转换启用下一代ADAS域控制应用说明

    电子发烧友网站提供《通过电压转换启用下一代ADAS域控制应用说明.pdf》资料免费下载
    发表于 09-11 11:32 ?0次下载
    通过电压转换启用<b class='flag-5'>下一代</b>ADAS域控制<b class='flag-5'>器</b>应用说明

    实现下一代具有电压电平转换功能的处理、FPGA 和ASSP

    电子发烧友网站提供《实现下一代具有电压电平转换功能的处理、FPGA 和ASSP.pdf》资料免费下载
    发表于 09-09 09:46 ?0次下载
    实现<b class='flag-5'>下一代</b>具有电压电平转换功能的处理<b class='flag-5'>器</b>、FPGA 和ASSP

    光纤收发器怎么判断好坏

    光纤收发器作为光纤通信系统中的关键设备,其性能直接影响到整个网络的传输质量和稳定性。因此,准确判断光纤收发器的好坏是确保网络正常运行的重要步骤。以下是从多个方面综合评估光纤
    的头像 发表于 08-26 15:11 ?2286次阅读

    光纤收发器的作用和分类

    光纤收发器,作为种在光纤通信系统中至关重要的设备,其作用和分类对于理解光纤通信技术的运作原理及选择合适的设备至关重要。以下将详细阐述光纤收发器
    的头像 发表于 08-26 14:45 ?2423次阅读

    光纤收发器pwr是什么意思

    光纤收发器种将电信号转换为光信号或将光信号转换为电信号的设备,广泛应用于通信、网络、监控等领域。在光纤收发器的参数中,PWR是个非常重要
    的头像 发表于 08-23 10:30 ?3321次阅读

    光纤收发器怎么区分发射端和接收端

    光纤收发器种将电信号转换为光信号,或者将光信号转换为电信号的设备,广泛应用于通信、网络、安防等领域。在光纤收发器的使用过程中,正确区分发射端和接收端是非常重要的。
    的头像 发表于 08-23 09:43 ?6001次阅读