人工智能(AI)公司Google DeepMind开发的机器学习模型GraphCast,在“3至10天的中期气象预测领域”展现了超越传统模型和其他AI方法的准确率和效率。相关研究11月14日发表于《科学》。
“GraphCast目前在AI模型的竞赛中处于领先地位。”美国加州大学洛杉矶分校计算机科学家Aditya Grover说。
预测天气是一项复杂且耗费大量能源的任务。全球气象机构使用的标准方法被称为数值天气预报(NWP),是一种基于物理原理的数学模型。它利用超级计算机处理来自全球的浮标、卫星和气象站天气数据。这些计算能准确描绘出热量、空气和水蒸气如何在大气中移动,但其运行是昂贵且能源密集型的。
为降低天气预测的资金和能源成本,几家科技公司开发了机器学习模型,可以根据过去和当前的天气数据快速预测未来的全球天气状况。其中包括DeepMind、英伟达(Nvidia)和华为,以及一系列初创企业。
欧洲中期天气预报中心(ECMWF)的Matthew Chantry表示,机器学习正在推动天气预报领域的一场革命。美国科罗拉多州大气合作研究所数据可视化研究员Jacob Radford说,AI模型的运行速度比传统的NWP模型快1000到10000倍,这能为解释和传播预测结果留出更多时间。
研究人员首先利用物理模型对1979年至2017年的全球天气预测来训练GraphCast,这使得后者能够了解诸如气压、风、温度和湿度等天气变量之间的联系。
经过训练的模型根据全球天气的“当前”状态和6小时前的天气预报来预测未来6小时的天气。早期的预测被反馈到模型中,使其能够对未来天气作出进一步的估计。DeepMind的研究人员发现,GraphCast可以根据2018年的全球天气预测,在不到1分钟的时间预测未来10天的天气,而且比ECMWF的高分辨率预报系统(HRES)更准确,后者是NWP的一个版本,需要数小时才能得出结果。
DeepMind计算机科学家Remi Lam表示,在完成的1200次预测中,GraphCast在99%以上的预测中都优于HRES;而在大气的所有层面,该模型90%的天气预报都优于HRES。
GraphCast预测了靠近地球表面的5个天气变量如离地面2米的气温,以及离地面更远的6个大气变量如风速。Chantry指出,GraphCast在预测恶劣天气事件方面也被证明是有用的,如热带气旋的路径,以及极端高温和低温事件。
Chantry指出,虽然基于某些指标的评估,GraphCast的性能优于研究中的其他模型,但未来使用其他指标对其性能进行评估可能会导致不同的结果。
“机器学习模型仍处于实验阶段,它不会完全取代传统方法,而是可以提高标准方法不擅长的特定类型的天气预测质量,比如预测几小时内的降雨量。”Chantry说,“我预计,人们还需要2年到5年的时间,才能利用机器学习方法进行预测,进而在现实世界中作出决策。”
与此同时,机器学习方法的问题必须得到解决。Grover说,与NWP模型不同,研究人员不能完全理解像GraphCast这样的AI是如何工作的,因为决策过程发生在AI的“黑匣子”中。“这让人质疑它们的可靠性。”同时,AI模型也有放大训练数据偏差的风险,并且需要大量的能量进行训练,尽管它们消耗的能量比NWP模型要少。
-
超级计算机
+关注
关注
2文章
474浏览量
42535 -
AI
+关注
关注
88文章
35758浏览量
282465 -
模型
+关注
关注
1文章
3547浏览量
50736
原文标题:完胜超级计算机!Science:谷歌AI新模型预测天气又快又准
文章出处:【微信号:AI智胜未来,微信公众号:AI智胜未来】欢迎添加关注!文章转载请注明出处。
发布评论请先 登录
NVIDIA助力AI超级计算机Isambard-AI投入使用
Blue Lion超级计算机将在NVIDIA Vera Rubin上运行
NVIDIA技术赋能欧洲最快超级计算机JUPITER
NVIDIA助力全球最大量子研究超级计算机
NVIDIA GTC2025 亮点 NVIDIA推出 DGX Spark个人AI计算机

NVIDIA 宣布推出 DGX Spark 个人 AI 计算机

NVIDIA推出个人AI超级计算机Project DIGITS
NVIDIA 推出高性价比的生成式 AI 超级计算机

NVIDIA 以太网加速 xAI 构建的全球最大 AI 超级计算机

评论