0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

自动驾驶仿真验证——天气因素对传感器探测模型的影响与建模

赛目科技 ? 来源:未知 ? 2023-07-01 17:25 ? 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

01

前言

SAIMO

自动驾驶汽车和自动驾驶系统是当今汽车领域最前沿的技术。自从汽车诞生以来,没有一种技术能以如此革命性的方式改变汽车行业。自动驾驶汽车致力于自动化的安全驾驶,并为行动不便的人们增加了使用交通工具的机会。自动驾驶汽车正在从根本上改变人和货物的运输方式,有望显著地造福未来社会。

然而,由于自动驾驶技术还未完善,为了确保安全和验证场景,难以让自动驾驶汽车广泛地进行实车验证。目前,一套行之有效的方法是利用仿真系统验证自动驾驶算法。这套方案已经得到行业认可,并涌现出大量仿真理论及应用软件,可以在安全性和成本等方面发挥重要作用。

自动驾驶算法由感知、决策和车辆控制等模块构成。在仿真环境中,还原真实车辆的雷达感知系统尤为重要,因为车辆后续的决策算法都需要基于感知系统的输出数据。赛目科技针对自动驾驶仿真中的雷达感知系统在不同天气环境下的表现,展开研究与讨论。

02

自动驾驶传感器感知系统仿真

SAIMO

自动驾驶车辆的传感器组件包括毫米波传感器、激光传感器、相机传感器和超声波传感器等多种类型。每种传感器都有其独特的功能和特性,因此对它们进行建模和研究具有挑战性。尤其是在自动驾驶仿真验证需求日益增加,精度要求也越来越高的情况下,传统的真值模型已经无法满足验证需求。

传感器内部电子器件的特性、结构和数据采集处理算法等属于“黑盒”,难以获取。同时,环境因素对传感器感知系统的影响无法忽略。例如,毫米波传感器受到目标电磁散射、地表杂波、环境噪声和目标截面积(RCS)的影响;激光传感器受到目标反射率和多次反射的影响;相机传感器受到光线衍射和环境光等的影响。因此,对于自动驾驶传感器感知系统仿真,需要考虑这些影响因素。

目前,物理传感器建模和研究是赛目科技自动驾驶传感器感知系统仿真中的重点研究方向。物理建模旨在构建足够还原真实传感器特性的数学模型,从而提高自动驾驶仿真验证在感知方面的能力。在物理传感器模型中,天气影响是一个极为重要的影响因素,因为天气对所有传感器都会产生影响,而且在真实场景中非常普遍。因此,针对不同天气环境对不同传感器的影响进行建模对自动驾驶传感器感知系统仿真具有重大意义。赛目科技致力于还原天气因素对自动驾驶感知系统的影响,利用数学建模与实测数据结合,针对不同传感器与不同类型的环境,提出了一套设计方案。

03

天气因素对传感器的影响

SAIMO

天气因素多种多样,本文主要讨论雨雪雾等常规天气。不同的天气对不同的传感器影响也不相同。如雾,对毫米波雷达的影响很小,通常考虑毫米波雷达的功率衰减即可;但对于激光雷达,脉冲波的波长很小,脉冲波会撞击空气中的水粒子导致产生杂波(如图1)。

图1:激光雷达返回(顶部)场景中的雾。颜色由左边的激光雷达通道和右边的强度。地面点已被去除,以更好地看到由雾引入的点[1]。

不同的天气种类会由于电磁波,脉冲波的碰撞到雨雪雾粒子而产生杂波,导致探测过程中出现杂点,但这种现象是真实存在的,需要在仿真中再现这种效果。同时,由于波具有一定的穿透性,空气中的雨雪雾粒子也会使得雷达的功率更快地衰减。赛目科技针对传感器发射功率衰减以及环境反射杂波两个方面进行构思,并提出一套基于这两方面影响的环境建模方案。

04

天气模型

SAIMO

针对毫米波传感器与激光传感器,天气模型影响的是两个方面,其中一个是对发射功率的衰减,目前已经有很多这方面的研究并且有仿真软件已经支持这个功能。对于衰减模型,针对不同的天气与传感器,可以使用函数

来表示距离R下目标的衰减,其中参数用于标定不同天气,在不同程度下对不同雷达的影响,其中x表示该天气的程度大小。该参数对不同规格的雷达也具有敏感性,通常需要通过实测数据标定才能获取。

对于杂波生成模型,难点在于两方面:

1)杂波生成的数量;

2)杂波对应的距离,如图2。

7206ec7a-17f0-11ee-962d-dac502259ad0.png

图2:激光雷达在喷雾的影响下所形成的点云信息,左为真实测量值,右为仿真值,可以观测到距离越远,杂点越少[2]。

目前已有方法从仿真环境出发,在环境中生成不同数量的随机粒子,在利用光追算法进行信号处理时,光线有可能撞击到环境中的粒子从而生成杂波信号。但是该方案有无法探测粒子后方目标以及对仿真环境需求过大的缺陷。赛目科技致力于传感器数据的实时仿真,区别于场景生成水粒子这种方法,直接在传感器运算阶段添加杂波来模拟环境因素,该方法拥有更快的运算速度。

生成杂波的数量需要通过路采数据得到,表示不同天气程度在不同类别传感器下生成的杂波数量。以对环境比较敏感的激光雷达为例,需要随机分配到每一个光线射线方向上,对应的第i条射线记为,并记录其随机产生的方向信息

值得注意的是,该杂波生成数量是在接收信号构建中体现,杂波数量不等于最终生成的杂点数量,因为雷达的后处理算法会将一些回波功率底,或者并非最强回波功率的部分排除。

对于杂波对应的距离分布,有一种思路是将空间中的雨雪雾,看作是连续的水粒子,固体粒子的分层。赛目科技认为电磁波在每一层中拥有相同的反射概率,这使得反射信号的层数满足一个多项式分布。而多项式分布的极限为泊松分布。赛目科技认为,可以是使用一个泊松概率分布来体现杂波出现的距离分布

其中表示不同天气程度在不同类别传感器下的泊松分布系数,需要实测数据支撑。第i条射线方向的距离为

就可以在场景中随机生成一定数量的,距离上满足泊松分布的杂波,其中射线方向对应的距离与角度信息为。由于杂波也是信号反射的结果,以激光雷达为例,在设置碰撞雨雪雾粒子反射率后,可以计算该杂波的功率

其中分别为激光的发射功率,增益,接受孔径和光束发散角。不同的雷达对应的回波功率公式都不相同,并且在不同模型中,其他参数也会对回波功率产生影响。这些杂波作为接收信号的一部分进入物理传感器的处理模块,功率衰减体现为弱反射物理的输出能力下降,杂波可能体现为点云或者RD图中的杂点。

05

结论与探讨

SAIMO

鉴于天气变化大/种类多的特点,自动驾驶仿真中的天气模型建模仍然存在很大的挑战。虽然利用概率模型进行建模是一种有效的方法,但是还需要进一步探索其他建模思路。例如,利用大量实测数据的数据库来提取对应天气的杂波,以更真实地模拟天气环境,但这需要有强大的数据支持。另外,在场景中构造粒子并将粒子信息返回的方法可以支持大风天气对雨雪的干扰,并还原一些扰动信息,但现有的传感器物理建模中,天气环境建模仍然是一个巨大的挑战。因此,需要继续深入研究和探索更加有效和准确的建模方法,以提高自动驾驶系统在各种复杂天气环境下的可靠性和安全性。赛目科技将会针对这些技术难点,持续进行产品的开发与迭代。

参考文献

References

[1]: Martin Hahner, Christos Sakaridis,Dengxin Dai,Luc Van Gool.

Fog Simulation on Real LiDAR Point Clouds for 3D Object Detection in Adverse Weather.

[2]: Clemens Linnhoff, Dominik Scheuble, Mario Bijelic, Lukas Elster, Philipp Rosenberger, Werner Ritter,Dengxin Dai and Hermann Winner.

Simulating Road Spray Effects in Automotive Lidar Sensor Models

SAIMO

扫描二维码

关注赛目科技

72653726-17f0-11ee-962d-dac502259ad0.jpg ?

专注智能网联汽车

测试丨验证丨评价研究


原文标题:自动驾驶仿真验证——天气因素对传感器探测模型的影响与建模

文章出处:【微信公众号:赛目科技】欢迎添加关注!文章转载请注明出处。


声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 赛目科技
    +关注

    关注

    0

    文章

    47

    浏览量

    1263

原文标题:自动驾驶仿真验证——天气因素对传感器探测模型的影响与建模

文章出处:【微信号:gh_c85a8e3c0f2a,微信公众号:赛目科技】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    太阳光模拟 | 在汽车自动驾驶开发中的应用

    在汽车产业向电动化、智能化转型的浪潮中,自动驾驶技术的研发面临着复杂环境感知的挑战。光照条件作为影响传感器性能的关键因素,直接关系到自动驾驶系统的安全性和可靠性。紫创测控Luminbo
    的头像 发表于 07-24 11:26 ?117次阅读
    太阳光模拟<b class='flag-5'>器</b> | 在汽车<b class='flag-5'>自动驾驶</b>开发中的应用

    康谋分享 | 物理级传感器仿真:破解自动驾驶长尾场景验证难题

    本文聚焦物理级仿真,剖析摄像头光学建模、CMOS 光电转换、激光雷达高斯光束与衰减建模,解读 ASAM OpenMATERIAL 3D 标准,以构建可信仿真闭环,助力算法
    的头像 发表于 07-09 09:36 ?1351次阅读
    康谋分享 | 物理级<b class='flag-5'>传感器</b><b class='flag-5'>仿真</b>:破解<b class='flag-5'>自动驾驶</b>长尾场景<b class='flag-5'>验证</b>难题

    康谋分享 | 基于多传感器数据的自动驾驶仿真确定性验证

    自动驾驶仿真测试中,游戏引擎的底层架构可能会带来非确定性的问题,侵蚀测试可信度。如何通过专业仿真平台,在多传感器配置与极端天气场景中实现测试
    的头像 发表于 07-02 13:17 ?3632次阅读
    康谋分享 | 基于多<b class='flag-5'>传感器</b>数据的<b class='flag-5'>自动驾驶</b><b class='flag-5'>仿真</b>确定性<b class='flag-5'>验证</b>

    为什么仿真对于自动驾驶来说非常重要?

    [首发于智驾最前沿微信公众号]自动驾驶仿真是当前自动驾驶技术研发与验证体系中不可或缺的重要环节。它通过构建虚拟的道路场景、车辆动力学模型以及
    的头像 发表于 05-23 09:13 ?293次阅读
    为什么<b class='flag-5'>仿真</b>对于<b class='flag-5'>自动驾驶</b>来说非常重要?

    新能源车软件单元测试深度解析:自动驾驶系统视角

    。 ?自动驾驶软件的特殊性? ? 感知层: ?激光雷达、摄像头等传感器数据处理算法的单元测试需覆盖极端场景。例如,激光雷达点云滤波算法在雨雪天气下的噪声抑制能力需通过边界测试验证。某
    发表于 05-12 15:59

    自动驾驶模型中常提的Token是个啥?对自动驾驶有何影响?

    、多模态传感器数据的实时处理与决策。在这一过程中,大模型以其强大的特征提取、信息融合和预测能力为自动驾驶系统提供了有力支持。而在大模型的中,有一个“Token”的概念,有些人看到后或许
    的头像 发表于 03-28 09:16 ?473次阅读

    技术分享 |多模态自动驾驶混合渲染HRMAD:将NeRF和3DGS进行感知验证和端到端AD测试

    多模态自动驾驶混合渲染HRMAD,融合NeRF与3DGS技术,实现超10万㎡场景重建,多传感器实时输出,仿真更接近真实数据!然而,如何用高保真仿真场景快速
    的头像 发表于 03-26 16:05 ?3528次阅读
    技术分享 |多模态<b class='flag-5'>自动驾驶</b>混合渲染HRMAD:将NeRF和3DGS进行感知<b class='flag-5'>验证</b>和端到端AD测试

    技术分享 | AVM合成数据仿真验证方案

    AVM 合成数据仿真验证技术为自动驾驶环境感知发展带来助力,可借助仿真软件配置传感器、搭建环境、处理图像,生成 AVM 合成数据,有效加速算
    的头像 发表于 03-19 09:40 ?3161次阅读
    技术分享 | AVM合成数据<b class='flag-5'>仿真</b><b class='flag-5'>验证</b>方案

    深度剖析传感器仿真

    传感器仿真对真实世界传感器的物理属性和行为进行建模,以再现其感知周围环境的过程。该技术使开发者能够拥有一个安全的试验场,来训练、测试和验证
    的头像 发表于 03-14 09:40 ?684次阅读

    DiffusionDrive首次在端到端自动驾驶中引入扩散模型

    ? ? 近年来,端到端自动驾驶成为研究热点,其核心在于从传感器数据直接学习驾驶决策。然而,驾驶行为本质上是多模态的——同一场景下可能存在多种合理轨迹,例如在复杂路口,车辆可选择左转、右
    的头像 发表于 03-08 13:59 ?1022次阅读
    DiffusionDrive首次在端到端<b class='flag-5'>自动驾驶</b>中引入扩散<b class='flag-5'>模型</b>

    自动驾驶规控算法验证到底需要什么样的场景仿真软件?

    ModelBase-AD凭借其优秀的静态场景模型、随机交通流模型、整车动力学模型,为各大主机厂和供应商提供了准确的自动驾驶规控算法验证
    的头像 发表于 02-11 14:16 ?1712次阅读
    <b class='flag-5'>自动驾驶</b>规控算法<b class='flag-5'>验证</b>到底需要什么样的场景<b class='flag-5'>仿真</b>软件?

    传感器融合在自动驾驶中的应用趋势探究

    自动驾驶技术的快速发展加速交通行业变革,为实现车辆自动驾驶,需要车辆对复杂动态环境做出准确、高效的响应,而多传感器融合技术为提升自动驾驶系统的稳定性和安全性提供了关键支持。通过将不同种
    的头像 发表于 12-05 09:06 ?1444次阅读
    多<b class='flag-5'>传感器</b>融合在<b class='flag-5'>自动驾驶</b>中的应用趋势探究

    一文聊聊自动驾驶测试技术的挑战与创新

    ,包括场景生成的多样性与准确性、多传感器数据融合的精度验证、高效的时间同步机制,以及仿真平台与实际场景的匹配等问题。 自动驾驶测试的必要性与现状 1.1
    的头像 发表于 12-03 15:56 ?860次阅读
    一文聊聊<b class='flag-5'>自动驾驶</b>测试技术的挑战与创新

    MEMS技术在自动驾驶汽车中的应用

    MEMS技术在自动驾驶汽车中的应用主要体现在传感器方面,这些传感器自动驾驶汽车提供了关键的环境感知和数据采集能力。以下是对MEMS技术在自动驾驶
    的头像 发表于 11-20 10:19 ?1613次阅读

    基于场景的自动驾驶验证策略

    自动驾驶功能的出现可以很大地降低由人为因素造成的交通事故,随之如何检验和验证自动驾驶系统及车辆的可靠性变得至关重要。但常见的测试验证手段通常
    的头像 发表于 10-22 16:14 ?904次阅读
    基于场景的<b class='flag-5'>自动驾驶</b><b class='flag-5'>验证</b>策略