0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

机器学习在网络中的实际应用

星星科技指导员 ? 来源:嵌入式计算设计 ? 作者:Kandarp Rastey ? 2022-11-18 17:21 ? 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

对互联网连接需求的快速增长给改善网络基础设施、性能和其他关键参数带来了压力。网络管理员必须遇到运行多个网络应用程序的不同类型的网络。

每个网络应用程序都有自己的一组功能和性能参数,这些功能和性能参数可能会动态变化。由于网络的多样性和复杂性,为此类网络场景构建的传统算法或硬编码技术是一项具有挑战性的任务。

机器学习被证明对几乎每个行业都是有益的,包括网络行业。机器学习可以帮助解决棘手的旧网络障碍,并刺激新的网络应用程序,使网络非常方便。让我们通过几个用例详细讨论基本工作流,以更好地了解网络域中的应用机器学习技术。

智能网络流量管理:

随着对物联网IoT) 解决方案的需求不断增长,现代网络会产生海量异构流量数据。对于这样的动态网络,用于网络流量监控和数据分析的传统网络管理技术(如 Ping 监控、日志文件监控甚至 SNMP)是不够的。他们通常缺乏实时数据的准确性和有效处理。另一方面,由于设备移动性和网络异构性,来自网络中其他来源(如蜂窝或移动设备)的流量相对表现出更复杂的行为。

机器学习有助于大数据系统以及大区域网络中的分析,以便在管理此类网络时识别复杂的模式。着眼于这些机会,网络领域的研究人员将深度学习模型用于网络流量监控和分析应用,如流量分类和预测、拥塞控制等。

1. 带内网络遥测

网络遥测数据提供有关网络性能的基本指标。这些信息通常很难解释。考虑到网络中通过的大小和总数据具有巨大的价值。如果使用得当,它可以大大提高性能。

带内网络遥测等新兴技术可以帮助实时收集详细的网络遥测数据。最重要的是,在此类数据集上运行机器学习可以帮助关联延迟、路径、交换机、路由器、事件等之间的现象,这在使用传统方法的大量实时数据中很难指出。

机器学习模型经过训练,可以理解遥测数据中的相关性和模式,最终能够根据从历史数据中学习的情况预测未来。这有助于管理未来的网络中断。

2. 资源分配和拥塞控制

每个网络基础结构都有一个预定义的总吞吐量。它进一步分为不同预定义带宽的多个通道。在这种情况下,每个最终用户的总带宽使用量是静态预定义的,网络的某些部分总是会存在瓶颈,其中网络被大量使用。

为了避免这种拥塞,可以训练有监督的机器学习模型来实时分析网络流量,并以网络遇到最少瓶颈的方式推断每个用户的适当带宽限制量。

此类模型可以从网络统计信息中学习,例如每个网络节点的活动用户总数、每个用户的历史网络使用数据、基于时间的数据使用模式、用户跨多个接入点的移动等。

3. 流量分类

在每个网络中,存在各种流量,如虚拟主机(HTTP),文件传输(FTP),安全浏览(HTTPS),HTTP实时视频流(HLS),终端服务(SSH)等。现在,在网络带宽使用方面,它们中的每一个都表现不同,通过FTP传输文件。它连续使用大量数据。

例如,如果正在流式传输视频,则它使用块中的数据和缓冲方法。当不同类型的流量以无监督的方式在网络中运行时,可以看到一些临时阻塞。

为了避免这种情况,可以使用机器学习分类器来分析和分类网络中的流量类型。然后,这些模型可用于推断网络参数,如分配的带宽、数据上限等,通过改进所服务请求的调度以及动态更改分配的带宽来帮助提高网络性能。

网络安全:

网络攻击数量的增加迫使组织不断监控和关联整个网络基础设施及其用户的数百万个外部和内部数据点。手动管理大量实时数据变得困难。这就是机器学习的用武之地。

机器学习可以实时识别网络中的某些模式和异常,并预测海量数据集中的威胁。通过自动化此类分析,网络管理员可以轻松检测威胁并快速隔离情况,同时减少人力。

1. 网络攻击识别/预防

网络行为是机器学习系统中用于异常检测的重要参数。机器学习引擎实时处理大量数据,以识别威胁、未知恶意软件和违反策略的行为。

如果发现网络行为在预定义的行为范围内,则接受网络事务,否则会在系统中触发警报。这可用于防止多种攻击,如 DoS、DDoS 和 Probe。

2. 网络钓鱼防护

诱骗某人点击看似合法的恶意链接,然后试图突破计算机的防御系统非常容易。机器学习有助于预测可疑网站,以帮助防止人们连接到恶意网站。

例如,文本分类器机器学习模型可以读取和理解 URL,并首先识别这些欺骗性网络钓鱼 URL。这将为最终用户创造更安全的浏览体验。

机器学习在网络中的集成不仅限于上述用例。可以在使用ML进行网络和网络安全领域开发解决方案,通过从网络和机器学习的角度阐明机会和研究来解决未解决的问题。

审核编辑:郭婷

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 互联网
    +关注

    关注

    55

    文章

    11261

    浏览量

    106944
  • 机器学习
    +关注

    关注

    66

    文章

    8513

    浏览量

    135089
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    FPGA在机器学习的具体应用

    ,越来越多地被应用于机器学习任务。本文将探讨 FPGA 在机器学习的应用,特别是在加速神经
    的头像 发表于 07-16 15:34 ?1529次阅读

    BP神经网络与深度学习的关系

    ),是一种多层前馈神经网络,它通过反向传播算法进行训练。BP神经网络由输入层、一个或多个隐藏层和输出层组成,通过逐层递减的方式调整网络权重,目的是最小化网络的输出误差。 二、深度
    的头像 发表于 02-12 15:15 ?985次阅读

    传统机器学习方法和应用指导

    在上一篇文章,我们介绍了机器学习的关键概念术语。在本文中,我们会介绍传统机器学习的基础知识和多种算法特征,供各位老师选择。 01 传统
    的头像 发表于 12-30 09:16 ?1289次阅读
    传统<b class='flag-5'>机器</b><b class='flag-5'>学习</b>方法和应用指导

    zeta在机器学习的应用 zeta的优缺点分析

    在探讨ZETA在机器学习的应用以及ZETA的优缺点时,需要明确的是,ZETA一词在不同领域可能有不同的含义和应用。以下是根据不同领域的ZETA进行的分析: 一、ZETA在机器
    的头像 发表于 12-20 09:11 ?1266次阅读

    加密算法在网络安全扮演什么角色?

    加密算法在网络安全扮演着至关重要的角色,以下是它们的主要功能和作用: 保护数据机密性 : 加密算法确保只有授权用户才能访问敏感数据,防止数据在传输或存储过程中被未授权访问。 确保数据完整性
    的头像 发表于 12-17 16:00 ?626次阅读

    双绞线在网络如何使用 双绞线布线标准及规范

    在现代网络通信中,双绞线因其优异的性价比和广泛的应用场景,成为了局域网布线的首选介质。本文将介绍双绞线在网络的使用方法,以及遵循的布线标准和规范。 一、双绞线的基本介绍 双绞线由两根绝缘的铜导线
    的头像 发表于 12-12 13:47 ?2752次阅读

    脉冲编码调制在网络通信中的应用

    脉冲编码调制(Pulse Code Modulation,PCM)在网络通信中的应用十分广泛,其作为一种数字信号处理技术,能够将模拟信号转换成数字信号,以便在数字通信系统传输和处理。以下是PCM
    的头像 发表于 11-26 09:57 ?1735次阅读

    OSI七层模型在网络故障排查的应用

    OSI(Open Systems Interconnection)七层模型在网络故障排查扮演着至关重要的角色。它提供了一个系统的框架,使得网络技术人员可以逐层分析并定位网络故障。以下
    的头像 发表于 11-24 11:01 ?1826次阅读

    poe技术在网络的应用 如何优化poe网络性能

    线接入点、IP摄像头、VoIP电话等。随着技术的发展,POE已经被广泛应用于各种网络环境,包括企业、教育、医疗和公共安全等领域。 1. 无线网络部署 POE技术使得无线接入点(AP)的部署变得更加灵活和简单。由于不需要额外的电
    的头像 发表于 11-19 10:36 ?1438次阅读

    逻辑异或在网络安全的应用实例

    在数字世界,信息安全是至关重要的。随着网络技术的发展,保护数据免受未授权访问和篡改的需求日益增长。逻辑异或(XOR)作为一种基本的二进制运算,在网络安全扮演着重要角色。 1. 数据
    的头像 发表于 11-19 09:50 ?1133次阅读

    什么是机器学习?通过机器学习方法能解决哪些问题?

    计算机系统自身的性能”。事实上,由于“经验”在计算机系统主要以数据的形式存在,因此机器学习需要设法对数据进行分析学习,这就使得它逐渐成为智能数据分析技术的创新源之一,
    的头像 发表于 11-16 01:07 ?1062次阅读
    什么是<b class='flag-5'>机器</b><b class='flag-5'>学习</b>?通过<b class='flag-5'>机器</b><b class='flag-5'>学习</b>方法能解决哪些问题?

    NPU与机器学习算法的关系

    紧密。 NPU的起源与特点 NPU的概念最早由谷歌在其TPU(Tensor Processing Unit)项目中提出,旨在为TensorFlow框架提供专用的硬件加速。NPU的设计目标是提高机器学习算法的运行效率,特别是在处理大规模数据集和复杂神经
    的头像 发表于 11-15 09:19 ?1415次阅读

    SFTP在网站备份的作用

    )协议的文件传输协议,它允许用户在网络安全地传输文件。与传统的FTP相比,SFTP提供了更强的安全性,因为它使用加密技术来保护数据传输过程的隐私和完整性。 SFTP在网站备份
    的头像 发表于 11-13 14:25 ?730次阅读

    eda在机器学习的应用

    机器学习项目中,数据预处理和理解是成功构建模型的关键。探索性数据分析(EDA)是这一过程不可或缺的一部分。 1. 数据清洗 数据清洗 是机器学习
    的头像 发表于 11-13 10:42 ?1011次阅读

    LSTM神经网络与其他机器学习算法的比较

    随着人工智能技术的飞速发展,机器学习算法在各个领域中扮演着越来越重要的角色。长短期记忆网络(LSTM)作为一种特殊的循环神经网络(RNN),因其在处理序列数据方面的优势而受到广泛关注。
    的头像 发表于 11-13 10:17 ?2234次阅读