0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

训练卷积神经网络通过绘画3D地形识别画家

星星科技指导员 ? 来源:NVIDIA ? 作者:ichelle Horton ? 2022-04-07 17:06 ? 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

通过一种新开发的人工智能工具,识别绘画伪造品变得更容易了。该工具可以精确地识别风格差异,精确到一个画笔刷毛。 Case Western Reserve University ( CWRU )团队的 research 通过训练卷积神经网络,根据绘画的 3D 地形来学习和识别画家。这项工作可以帮助历史学家和艺术专家区分合作作品中的艺术家,并找到伪造的作品。

鉴定古画有几种方法。专家经常评估材料的类型和状态,并使用科学方法,如显微分析、红外光谱和反射术。

但是,这些详尽的方法非常耗时,可能会导致错误。他们也无法识别一件艺术品的多个画家。根据这项研究,像埃尔·格雷科和伦勃朗这样的画家经常雇佣艺术家的工作室,以与自己相同的风格绘制画布的各个部分,使得个人贡献不明确。

虽然用机器学习分析艺术品是一个相对较新的领域,但最近的研究集中于将人工智能方法与高分辨率的绘画图像相结合,以了解画家的风格并识别画家。研究人员假设, 3D 分析可以保存比图像更多的数据,在图像中,笔触图案、油漆沉积和干燥方法等特征可以作为艺术家独特的指纹。

CWRU 的安布罗斯·斯瓦西物理学教授、资深作家肯尼斯·辛格( Kenneth Singer )在一份 press release 的报告中说:“ 3D 地形是人工智能“看到”绘画的一种新方式。”。

研究人员用光学轮廓仪从一个表面提取地形数据,扫描了同一场景的 12 幅画,用相同的材料绘制,但由四位不同的艺术家绘制。光学轮廓仪通过对约 5 至 15 mm 的小方形艺术片进行采样,检测并记录表面的微小变化,这可归因于某人如何握住和使用画笔。

然后,他们训练一组卷积神经网络来发现小斑块中的模式,为每个艺术家采样 160 到 1440 个斑块。使用 NVIDIA GPU 和 cuDNN 加速深度学习框架,该算法将样本匹配回单个画家。

研究小组对一位艺术家的 180 幅油画进行了算法测试,将样本与一位画家进行了匹配,准确率约为 95% 。

据合著者、 CWRU 的 Warren E.Rupp 物理学副教授 Michael Hinczewski 所说,在训练数据集有限的情况下,使用如此小的训练集的能力对于后来的艺术历史应用是有希望的。

辛切夫斯基说:“其他大多数使用人工智能进行艺术归属的研究都集中在整个绘画的照片上。”。“我们将这幅画分解成从半毫米到几厘米见方的虚拟小块。因此我们甚至不再有关于主题的信息,但我们可以从单个小块准确地预测谁画了它。这太神奇了。”

根据他们的发现,研究人员将表面形貌视为使用无偏定量分析进行归因和伪造检测的额外工具。在与位于马德里的艺术保护公司 Factum Arte 的合作下,该团队正在对西班牙文艺复兴时期画家 El Greco 的几件作品进行艺术家工作室归属和保护研究。

与研究相关的数据和代码可通过 GitHub 获取。这项工作是来自 CWRU 艺术史和艺术系、克利夫兰艺术学院和克利夫兰艺术博物馆的研究人员的共同努力。

关于作者

Michelle Horton 是 NVIDIA 的高级开发人员通信经理,拥有通信经理和科学作家的背景。她在 NVIDIA 为开发者博客撰文,重点介绍了开发者使用 NVIDIA 技术的多种方式。

审核编辑:郭婷

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4814

    浏览量

    104474
  • NVIDIA
    +关注

    关注

    14

    文章

    5348

    浏览量

    106848
  • 人工智能
    +关注

    关注

    1810

    文章

    49221

    浏览量

    251540
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    BP神经网络卷积神经网络的比较

    多层。 每一层都由若干个神经元构成,神经元之间通过权重连接。信号在神经网络中是前向传播的,而误差是反向传播的。 卷积
    的头像 发表于 02-12 15:53 ?825次阅读

    BP神经网络的优缺点分析

    自学习能力 : BP神经网络能够通过训练数据自动调整网络参数,实现对输入数据的分类、回归等任务,无需人工进行复杂的特征工程。 泛化能力强 : BP神经网络
    的头像 发表于 02-12 15:36 ?1052次阅读

    什么是BP神经网络的反向传播算法

    BP神经网络的反向传播算法(Backpropagation Algorithm)是一种用于训练神经网络的有效方法。以下是关于BP神经网络的反向传播算法的介绍: 一、基本概念 反向传播算
    的头像 发表于 02-12 15:18 ?898次阅读

    BP神经网络与深度学习的关系

    ),是一种多层前馈神经网络,它通过反向传播算法进行训练。BP神经网络由输入层、一个或多个隐藏层和输出层组成,通过逐层递减的方式调整
    的头像 发表于 02-12 15:15 ?989次阅读

    BP神经网络在图像识别中的应用

    传播神经网络(Back Propagation Neural Network),是一种多层前馈神经网络,主要通过反向传播算法进行学习。它通常包括输入层、一个或多个隐藏层和输出层。BP神经网络
    的头像 发表于 02-12 15:12 ?791次阅读

    如何训练BP神经网络模型

    BP(Back Propagation)神经网络是一种经典的人工神经网络模型,其训练过程主要分为两个阶段:前向传播和反向传播。以下是训练BP神经网络
    的头像 发表于 02-12 15:10 ?1035次阅读

    卷积神经网络的实现工具与框架

    : TensorFlow是由Google Brain团队开发的开源机器学习框架,它支持多种深度学习模型的构建和训练,包括卷积神经网络。TensorFlow以其灵活性和可扩展性而闻名,适用于研究和生产环境。 特点: 灵活性: Te
    的头像 发表于 11-15 15:20 ?779次阅读

    卷积神经网络的参数调整方法

    卷积神经网络因其在处理具有空间层次结构的数据时的卓越性能而受到青睐。然而,CNN的成功很大程度上依赖于其参数的合理设置。参数调整是一个复杂的过程,涉及到多个超参数的选择和优化。 网络架构参数
    的头像 发表于 11-15 15:10 ?1355次阅读

    卷积神经网络在自然语言处理中的应用

    自然语言处理是人工智能领域的一个重要分支,它致力于使计算机能够理解、解释和生成人类语言。随着深度学习技术的发展,卷积神经网络(CNNs)作为一种强大的模型,在图像识别和语音处理等领域取得了显著成果
    的头像 发表于 11-15 14:58 ?912次阅读

    卷积神经网络与传统神经网络的比较

    在深度学习领域,神经网络模型被广泛应用于各种任务,如图像识别、自然语言处理和游戏智能等。其中,卷积神经网络(CNNs)和传统神经网络是两种常
    的头像 发表于 11-15 14:53 ?2041次阅读

    深度学习中的卷积神经网络模型

    卷积神经网络是一种前馈神经网络,其灵感来源于生物的视觉皮层机制。它通过模拟人类视觉系统的处理方式,能够自动提取图像特征,从而在图像识别和分
    的头像 发表于 11-15 14:52 ?935次阅读

    卷积神经网络的基本原理与算法

    卷积神经网络(Convolutional Neural Networks,CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks
    的头像 发表于 11-15 14:47 ?1926次阅读

    LSTM神经网络训练数据准备方法

    LSTM(Long Short-Term Memory,长短期记忆)神经网络训练数据准备方法是一个关键步骤,它直接影响到模型的性能和效果。以下是一些关于LSTM神经网络训练数据准备的
    的头像 发表于 11-13 10:08 ?2288次阅读

    关于卷积神经网络,这些概念你厘清了么~

    神经网络训练中非常有效。卷积层使用一种被称为卷积的数学运算来识别像素值数组的模式。卷积发生在隐
    发表于 10-24 13:56

    【飞凌嵌入式OK3576-C开发板体验】RKNN神经网络-车牌识别

    LPRNet基于深层神经网络设计,通过轻量级的卷积神经网络实现车牌识别。它采用端到端的训练方式,
    发表于 10-10 16:40