0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

深度解读钴酸锂体系电解液应用

锂电联盟会长 ? 来源: 锂电联盟会长 ? 作者:锂电联盟会长 ? 2021-04-17 09:20 ? 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

c7d090e4-9ef7-11eb-8b86-12bb97331649.jpg

c80160d4-9ef7-11eb-8b86-12bb97331649.jpg

c840963c-9ef7-11eb-8b86-12bb97331649.jpg

c8b08bcc-9ef7-11eb-8b86-12bb97331649.jpg

c8d61e28-9ef7-11eb-8b86-12bb97331649.jpg

c8ff488e-9ef7-11eb-8b86-12bb97331649.jpg

c920a812-9ef7-11eb-8b86-12bb97331649.jpg

c95027c2-9ef7-11eb-8b86-12bb97331649.jpg

c9815d60-9ef7-11eb-8b86-12bb97331649.jpg

c9a664f2-9ef7-11eb-8b86-12bb97331649.jpg

c9ca78f6-9ef7-11eb-8b86-12bb97331649.jpg

c9ead312-9ef7-11eb-8b86-12bb97331649.jpg

ca2431b6-9ef7-11eb-8b86-12bb97331649.jpg

编辑:jq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 正极材料
    +关注

    关注

    4

    文章

    328

    浏览量

    19876
  • 电解液
    +关注

    关注

    10

    文章

    863

    浏览量

    23572
  • 钴酸锂
    +关注

    关注

    1

    文章

    32

    浏览量

    9395

原文标题:钴酸锂体系电解液,终于讲明白了!

文章出处:【微信号:Recycle-Li-Battery,微信公众号:锂电联盟会长】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    电解电容的 “环保转身”:无汞电解液如何让它从 “电子垃圾” 变 “可回收物”?

    近年来,随着全球环保法规日益严格和电子废弃物问题日益突出,铝电解电容这一电子行业的基础元件正经历着一场深刻的"环保革命"。传统铝电解电容因含汞电解液而被贴上"电子垃圾"的标签,而新型无汞电解液
    的头像 发表于 08-19 17:04 ?141次阅读
    铝<b class='flag-5'>电解</b>电容的 “环保转身”:无汞<b class='flag-5'>电解液</b>如何让它从 “电子垃圾” 变 “可回收物”?

    电解电容的 “密封工艺”:如何防止电解液泄漏的 “致命伤”?

    电解电容作为电子电路中的关键元件,其可靠性直接影响整机设备的寿命。而电解液泄漏是铝电解电容失效的“头号杀手”——轻则导致容量衰减,重则引发短路甚至爆炸。通过分析行业技术资料和实际案例,我们发现密封
    的头像 发表于 08-08 16:29 ?323次阅读

    锂离子电池电解液浸润机制解析:从孔隙截留到工艺优化

    在锂离子电池制造领域,美能光子湾始终怀揣着推动清洁能源时代加速到来的宏伟愿景,全力助力锂离子电池技术的革新。在锂离子电池制造过程中,电解液浸润是决定电池性能、循环寿命和安全性的关键步骤。然而,由于
    的头像 发表于 08-05 17:49 ?342次阅读
    锂离子电池<b class='flag-5'>电解液</b>浸润机制解析:从孔隙截留到工艺优化

    电解电容会容量衰减下降的原因

    电解电容容量衰减下降主要由电解液蒸发、电极腐蚀、氧化膜增厚、环境因素及制造工艺缺陷等因素导致,以下是具体分析: 1、电解液蒸发 :电解液是铝电解
    的头像 发表于 08-01 15:36 ?254次阅读

    电解电容鼓包是什么原因造成的?如何预防?

    电解电容鼓包的主要原因 1、高温加速电解液挥发与干涸 电解电容内部填充有电解液,其挥发速率与温度呈指数关系。当电容工作温度超过额定值,电解液
    的头像 发表于 07-21 15:22 ?438次阅读
    <b class='flag-5'>电解</b>电容鼓包是什么原因造成的?如何预防?

    攻克锂电池研发痛点-电解液浸润量化表征

    ;amp;痛点解决方案磷酸铁极片辊压前后对比实验 痛点:辊压工艺导致孔隙结构变化,降低电解液浸润效率,影响电池充放电性能 实验结果:辊压后极片孔隙减小,浸润速度显著减慢 解决方案: 优化辊压压力参数
    发表于 07-14 14:01

    为什么铝电解电容会容量衰减下降?

    电解液蒸发:容量衰减的“隐形杀手” 电解液作为铝电解电容的核心介质,其蒸发过程是容量衰减的主因之一。电解液蒸发导致两个关键后果: 有效电极面积缩减 :
    的头像 发表于 07-02 15:29 ?238次阅读

    非接触式位传感器精准检测电解液位优选方案

    在现代化工业生产中,电解液位检测是一项至关重要的任务,其准确性直接关系到设备的稳定运行和产品质量。传统接触式位传感器由于直接接触电解液,容易受到腐蚀、污染和粘附等问题,从而导致测量
    的头像 发表于 04-12 10:53 ?593次阅读
    非接触式<b class='flag-5'>液</b>位传感器精准检测<b class='flag-5'>电解液</b><b class='flag-5'>液</b>位优选方案

    强弱耦合型电解液调控超级电容器宽温域特性及其机制研究

    强弱耦合型电解液调控超级电容器宽温域特性及其机制研究 Engineering electrolyte strong-weak coupling effect toward
    的头像 发表于 01-21 11:01 ?655次阅读
    强弱耦合型<b class='flag-5'>电解液</b>调控超级电容器宽温域特性及其机制研究

    调控磷酸酯基阻燃电解液离子-偶极相互作用实现钠离子软包电池安全稳定运行

    研究背景 相较资源有限的锂离子电池,钠离子电池是一种极具前景的电化学储能技术,尤其适用于大规模储能系。然而,大多数钠离子电池体系仍基于传统碳酸酯基电解液,这种电解液的热稳定性差、挥发性高且易燃,在
    的头像 发表于 01-06 17:41 ?1001次阅读
    调控磷酸酯基阻燃<b class='flag-5'>电解液</b>离子-偶极相互作用实现钠离子软包电池安全稳定运行

    贴片铝电解电容的封装材质型号有哪些?

    的散热功能。 内部材料 :主要包括铝箔、电解纸和电解液。铝箔经过电化腐蚀处理,形成凹凸不平的表面,以增大与电解质的接触面积;电解纸则用于吸附电解液
    的头像 发表于 12-27 14:32 ?952次阅读
    贴片铝<b class='flag-5'>电解</b>电容的封装材质型号有哪些?

    水系电解液宽电压窗口设计助力超长寿命水系钠离子电池

    【研究背景】水系钠离子电池(ASIBs)具有高安全、低成本、快速充电等优点,在大规模储能中显示出巨大的潜力。然而,传统的低浓度水系电解液(salt-in-water electrolytes
    的头像 发表于 12-20 10:02 ?1805次阅读
    水系<b class='flag-5'>电解液</b>宽电压窗口设计助力超长寿命水系钠离子电池

    快充过程析、SEI生长和电解液分解耦合机制的定量分析

    机制进行了细致深入的分析。研究结果揭示,沉积、固体电解质界面(SEI)的生长以及电解液的分解这三个关键过程存在着紧密的耦合作用,共同加剧了快速充电的条件下的电池性能衰减。该工作为研究快充条件下锂离子电池性能退化的复杂机制提供了
    的头像 发表于 12-10 09:15 ?1966次阅读
    快充过程析<b class='flag-5'>锂</b>、SEI生长和<b class='flag-5'>电解液</b>分解耦合机制的定量分析

    钠电新突破:实现宽温长寿命电池的电解液革新

    ?? 【研究背景】 钠离子电池(SIBs)因其资源丰富、成本低等优势成为锂离子电池的有力替代品。电解液是SIBs的“血液”,对电池性能如容量、倍率、稳定性、高低温性能和安全性有重大影响。钠盐
    的头像 发表于 11-28 09:51 ?1592次阅读
    钠电新突破:实现宽温长寿命电池的<b class='flag-5'>电解液</b>革新

    物联网行业中的常用电池方案_亚电池

    1.亚电池简介 亚硫酰氯(Li/SOCl2)电池(简称:亚电池)是一种以为负极,碳作正极,无水四氯铝
    的头像 发表于 09-25 11:22 ?1436次阅读
    物联网行业中的常用电池方案_<b class='flag-5'>锂</b>亚电池