0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

探讨STM32F407+KS103超声波模块测距

Q4MP_gh_c472c21 ? 来源:21ic蓝V作者呐咯密密 ? 作者:21ic蓝V作者呐咯密 ? 2021-03-26 13:58 ? 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

本文介绍基于STM32F407的KS103超声波模块的使用,包含使用注意事项以及代码配置,同时会附上本人在开发时遇到的问题以及解决方法。

KS103模块使用串口/IIC接口与主机通信,自动响应主机的iic/串口控制指令。

包含温度补偿的距离探测,同时可以在1ms内检测光强。

探测范围 1cm~800cm及 1cm~1000cm(10 米)

5s 未收到 I2C 控制指令自动进入 uA 级休眠,并可随时被主机 I2C 控制指令唤醒

TTL串口模式

在 KS103 上连线引脚上标识有:VCC、SDA/TX、SCL/RX、GND 及 MODE。模块在上电之前,MODE 需要接 0V 地,上电后模块将工作于 TTL 串口模式。如果KS103在上电后再将 MODE 引脚接 0V 地,模块将仍然工作于 I2C 模式。因此,TTL 串口模式时需要 5 根线来控制,其中 VCC 用于连接+5V(3.0~5.5V 范围均可)电源(1),GND用于连接电源地,SDA/TX 连接 MCUUSB 转 TTL 模块的 RXD,SCL/RX 引脚连接 MCU 或USB 转 TTL 模块的 TXD 。

在使用时最好使用5V标准电压,电压低会影响量程。

新到手的模块默认串口地址是0xE8,可修改。

这里本人被坑了,因为我到手的模块是别人用过的,被修改了地址但是不和我说,就是调试不出来。

当然也是我偷懒了,模块在上电的时候背面的LED会闪烁,告诉用户自身的地址,我没在意。上电后快闪两下是代表二进制的“1”,慢闪一下代表“0”,一共八位,盯着记录就能获得其地址。

串口模式很占用串口资源,我并没有使用该模式进行开发,仅仅使用了官方的上位机进行测试,鉴定模组的好坏。

确认模组没问题,选用IIC接口进行开发,这样一条总线可以挂载多个模块,只需要总线寻址便可。

I2C 模式

在使用iic模式时,硬件需要注意几点:

SCL 及 SDA 线均需要由主机接一个 4.7K(阻值 1~10K 均可)电阻到 VCC ;I2C 通信速率建议不要高于 100kbit/s (因为模块的iic最大速率只有100K)。

直接从代码开始:

因为对速度要求不高,而且为了移植方便,采用软件模拟iic。其实为了偷懒,模拟简单呀。

老规矩,初始化iic。

void IIC_Init(void) { GPIO_InitTypeDef GPIO_InitStructure; RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOB, ENABLE);//使能GPIOB时钟 //GPIOB8,B9初始化设置 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6 | GPIO_Pin_7; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT;//普通输出模式 GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;//推挽输出 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;//100MHz GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;//上拉 GPIO_Init(GPIOB, &GPIO_InitStructure);//初始化 IIC_SCL=1; IIC_SDA=1; }

写iic控制函数,老掉牙的东西,全网都有。

//产生IIC起始信号 void IIC_Start(void){ SDA_OUT(); //sda线输出 IIC_SDA=1; IIC_SCL=1; delay_us(10); IIC_SDA=0;//START:when CLK is high,DATA change form high to low delay_us(10); IIC_SCL=0;//钳住I2C总线,准备发送或接收数据 } //产生IIC停止信号 void IIC_Stop(void){ SDA_OUT();//sda线输出 IIC_SCL=0; IIC_SDA=0;//STOP:when CLK is high DATA change form low to high delay_us(10); IIC_SCL=1; IIC_SDA=1;//发送I2C总线结束信号 delay_us(10); } //等待应答信号到来 //返回值:1,接收应答失败 // 0,接收应答成功 u8 IIC_Wait_Ack(void){ u8 ucErrTime=0; SDA_IN(); //SDA设置为输入 IIC_SDA=1;delay_us(6); IIC_SCL=1;delay_us(6); while(READ_SDA) { ucErrTime++; if(ucErrTime>250) { IIC_Stop(); return 1; } } IIC_SCL=0;//时钟输出0 return 0; } //产生ACK应答 void IIC_Ack(void){ IIC_SCL=0; SDA_OUT(); IIC_SDA=0; delay_us(10); IIC_SCL=1; delay_us(10); IIC_SCL=0; } //不产生ACK应答 void IIC_NAck(void){ IIC_SCL=0; SDA_OUT(); IIC_SDA=1; delay_us(10); IIC_SCL=1; delay_us(10); IIC_SCL=0; } //IIC发送一个字节 //返回从机有无应答 //1,有应答 //0,无应答 void IIC_Send_Byte(u8 txd){ u8 t; SDA_OUT(); IIC_SCL=0;//拉低时钟开始数据传输 for(t=0;t<8;t++) { IIC_SDA=(txd&0x80)>>7; txd<<=1; delay_us(10); //对TEA5767这三个延时都是必须的 IIC_SCL=1; delay_us(10); IIC_SCL=0; delay_us(10); } } //读1个字节,ack=1时,发送ACK,ack=0,发送nACK u8 IIC_Read_Byte(unsigned char ack){ unsigned char i,receive=0; SDA_IN();//SDA设置为输入 for(i=0;i<8;i++ ) { IIC_SCL=0; delay_us(10); IIC_SCL=1; receive<<=1; if(READ_SDA)receive++; delay_us(5); } if (!ack) IIC_NAck();//发送nACK else IIC_Ack(); //发送ACK return receive; }

写KS103的控制函数

u8 KS103_ReadOneByte(u8 address, u8 reg) { u8 temp=0; IIC_Start(); IIC_Send_Byte(address); //发送低地址 IIC_Wait_Ack(); IIC_Send_Byte(reg); //发送低地址 IIC_Wait_Ack(); IIC_Start(); IIC_Send_Byte(address + 1); //进入接收模式 IIC_Wait_Ack(); delay_us(50); //增加此代码通信成功!!! temp=IIC_Read_Byte(0); //读寄存器3 IIC_Stop();//产生一个停止条件 return temp; } void KS103_WriteOneByte(u8 address,u8 reg,u8 command) { IIC_Start(); IIC_Send_Byte(address); //发送写命令 IIC_Wait_Ack(); IIC_Send_Byte(reg);//发送高地址 IIC_Wait_Ack(); IIC_Send_Byte(command); //发送低地址 IIC_Wait_Ack(); IIC_Stop();//产生一个停止条件 }

这里依照了模块的指令发送流程:

pIYBAGBdeRSAPxHbAAGAvS6ph0U137.png

探测指令从 0x01 到 0x2f,数值越大,信号增益越大。

获取距离数据

KS103_WriteOneByte(0XD2,0X02,0XB0); delay_ms(100); range1 = KS103_ReadOneByte(0xD2, 0x02); range2 = KS103_ReadOneByte(0xD2, 0x03);

每一帧的探测指令格式为:

c78d6dce-8dcb-11eb-8b86-12bb97331649.png

KS103_WriteOneByte(0XD2,0X02,0XB0);中,0xd2为模块的地址,02为寄存器地址,0xB0为控制命令。

c7b74c7a-8dcb-11eb-8b86-12bb97331649.png


在发送探测指令后需要等待一段时间才可通过iic总线获取数据,过早的查询总线会获得0XFF。在读取总线数据时除了需要发送模块iic的地址,还需要将模块iic的地址加1,而且在之后必须要等待,才能获取完整的数据。因为返回的是16位数据,所以这里我采用执行两次KS103_ReadOneByte()函数。

在这些都处理完之后我将采集到的数据输出到串口,发现并不能成功,range1和range2的值并不变。最后发现我是用的是0xBC探测指令,最大耗时87MS,而我只延时50ms。通过修改探测指令和延时时间均可解决问题。

编辑:jq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 超声波测距
    +关注

    关注

    5

    文章

    247

    浏览量

    38755
  • STM32F407
    +关注

    关注

    15

    文章

    188

    浏览量

    30860
  • KS103
    +关注

    关注

    3

    文章

    2

    浏览量

    8071

原文标题:STM32F407+KS103超声波模块测距

文章出处:【微信号:gh_c472c2199c88,微信公众号:嵌入式微处理器】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    超声波测距换能器:工业与生活中的测量利器

    在科技飞速发展的今天,各类传感器在各个领域发挥着至关重要的作用。其中,超声波测距换能器凭借其独特的优势,成为了距离测量领域的明星产品。无论是工业生产中的精密检测,还是日常生活中的智能应用,超声波
    的头像 发表于 07-02 16:22 ?275次阅读
    <b class='flag-5'>超声波</b><b class='flag-5'>测距</b>换能器:工业与生活中的测量利器

    超声波测距换能器:工业与生活中的测量利器

    在科技飞速发展的今天,各类传感器在各个领域发挥着至关重要的作用。其中,超声波测距换能器凭借其独特的优势,成为了距离测量领域的明星产品。无论是工业生产中的精密检测,还是日常生活中的智能应用,超声波
    发表于 07-02 16:20

    超声波清洗机是什么,它如何通过超声波振动来清洗物品?

    超声波清洗机的工作原理超声波清洗机是一种广泛用于清洗物品的设备,它利用超声波振动来去除污垢和杂质。本文将深入探讨超声波清洗机的工作原理以及它
    的头像 发表于 06-30 16:59 ?323次阅读
    <b class='flag-5'>超声波</b>清洗机是什么,它如何通过<b class='flag-5'>超声波</b>振动来清洗物品?

    超声波换能器:原理与多领域应用解析

    一、引言 在现代科技的发展进程中,超声波技术占据着重要地位,从工业生产到医疗诊断,从日常生活到科研探索,超声波的身影无处不在。而超声波换能器作为超声波技术的核心部件,如同一位幕后英雄,
    发表于 06-28 15:09

    超声波水下测距换能器:探索水下世界的“千里眼”

    水下测量的“超级英雄”——超声波水下测距换能器。 一、什么是超声波水下测距换能器 超声波水下测距
    发表于 06-26 10:43

    超声波清洗的原理是什么?超声波清洗是如何起作用的?

    超声波清洗是一种利用高频超声波振动来清洗物体表面和难以达到的细微部分的清洁技术。其工作原理基于声波的物理特性和声波对液体中微小气泡的影响。以下是超声
    的头像 发表于 05-26 17:21 ?931次阅读
    <b class='flag-5'>超声波</b>清洗的原理是什么?<b class='flag-5'>超声波</b>清洗是如何起作用的?

    超声波频率和功率对在线式超声波清洗的影响如何?

    在线式超声波清洗是一种高效、环保的清洗方式,在多个行业得到了广泛应用。然而,超声波频率和功率是影响清洗效果和清洗速度的关键因素。在本文中,我们将从理论和实践两个方面分析超声波频率和功率对在线式
    的头像 发表于 05-09 16:39 ?460次阅读
    <b class='flag-5'>超声波</b>频率和功率对在线式<b class='flag-5'>超声波</b>清洗的影响如何?

    【CW32模块使用】US-016超声波测距传感器

    US-016是市场上唯有的一款模拟量输出的超声波测距模块,输出的模拟电压和距离值成正比,可以方便的和其他系统相连,US-016工作稳定可靠。 US-016超声波
    的头像 发表于 11-28 12:02 ?1717次阅读
    【CW32<b class='flag-5'>模块</b>使用】US-016<b class='flag-5'>超声波</b><b class='flag-5'>测距</b>传感器

    超声波液位计的工作原理 超声波液位计与其他液位计的比较

    超声波液位计是一种利用超声波信号来测量液体高度的仪器。其工作原理基于超声波在介质中的传播特性。以下是超声波液位计的基本工作原理: 发射超声波
    的头像 发表于 11-23 10:28 ?1593次阅读

    如何避免超声波对晶振的影响

    超声波技术被广泛应用于工业生产中,常见的超声波工艺有:超声波清洗工艺、焊接工艺。而在电子元器件圈中最常用到的则是超声波清洗工艺。使用该种工艺时,超声
    的头像 发表于 10-19 08:10 ?1712次阅读
    如何避免<b class='flag-5'>超声波</b>对晶振的影响

    RK3568教学实验箱_操作案例:5-19 超声波测距实验

    的设计实现:LCD显示界面以及与用户的交互; (3)编辑控制代码; (4)编译程序; (5)运行程序。 根据原理图,可知本实验使用的超声波测距模块是基于CS100A系列芯片的。 CS100A芯片
    发表于 09-23 15:40

    超声波和次声波的频率范围和应用

    超声波和次声波是两种不同频率的声波,它们在许多领域都有广泛的应用。以下是关于超声波和次声波的频率范围和应用的介绍:
    的头像 发表于 09-19 16:42 ?6971次阅读

    STM32最小系统板与ESP01S接入机智云教程

    本次采用STM32F103C8T6单片机、ESP-01S模块、红外避障模块、蜂鸣器模块,OLED(0.96iic)、继电器模块
    的头像 发表于 09-04 08:02 ?1996次阅读
    <b class='flag-5'>STM32</b>最小系统板与ESP01S接入机智云教程

    PGA460超声波模块硬件和软件优化

    电子发烧友网站提供《PGA460超声波模块硬件和软件优化.pdf》资料免费下载
    发表于 08-27 11:16 ?9次下载
    PGA460<b class='flag-5'>超声波模块</b>硬件和软件优化

    第16章-超声波跟随功能 基于STM32的三路超声波自动跟随小车 毕业设计 课程设计

    第16章-超声波跟随功能 基于STM32的三路超声波自动跟随小车 毕业设计 课程设计
    的头像 发表于 08-21 15:26 ?1065次阅读
    第16章-<b class='flag-5'>超声波</b>跟随功能 基于<b class='flag-5'>STM32</b>的三路<b class='flag-5'>超声波</b>自动跟随小车 毕业设计 课程设计