0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

诺丁汉大学用深度学习复原魔方

hl5C_deeptechch ? 来源:DeepTech深科技 ? 作者:DeepTech深科技 ? 2021-03-03 13:58 ? 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

回想在校期间,很多同学会在课间休息时从书桌里掏出魔方或娴熟或略显笨拙地转动起来,甚至上课时有些同学也会悄悄地在桌下转动手中的魔方。现在,“人工智能” 也对这款益智玩具产生了兴趣,期待用更加智能的方式实现魔方的复原。

近日,诺丁汉大学(University of Nottingham)副教授 Colin G. Johnson 带领的研究小组开发出一种深度学习技术,可以从一套样本解决方案中学习 “适应度函数” 并用它来解决魔方复原问题。该研究相关论文于 2 月 24 日发表在 Expert Systems 上,题目为《用逐级深度学习方法解决魔方问题》(Solving the Rubik's cube with stepwise deep learning)。

将打乱的魔方复原是一个相对复杂的问题,但研究人员决定将这一复杂的问题转换为多个简单的问题来解决,他们认为 “解决任何难题最多需要 20 步”。因此,他们将逐级学习和深度神经网络作为本次设计方案的两种主要方法。对应到魔方复原中,该技术会一步步地去尝试解决,而不是一次性学习复原魔方的整体方案。

换句话说,就是这种技术会通过尝试转动一个部件使魔方呈现更简单的形态,也就是把一个复杂的问题拆解成若干个相对简单的小问题,先学习解决一个小问题的方案,然后经过对这一步骤的数次重复,最终达到魔方复原的效果。其实,该种方案也意味着,整体解决方案的每一步都要比上一步更加容易。

该技术会 “反其道而行之”,从魔方一步步打乱的过程中学习怎样将混乱的魔方复原。具体操作起来就是,将拼好的魔方标记为 “0”,进行一次旋转后的魔方标记为 “1”,再旋转一次后标记为 “2”…… 以此类推。每个状态都与一个数字配对,该数字代表该状态下距离目标的步数。因此,学习的过程也是建立模型的过程,最终实现从数据库中抽取任意一个状态,预测将需要多少步才能到达目标状态,该步骤就与其被标记的数字相对应。

图|计算机学习魔方复原的数据(来源:Expert Systems)

然后,用特定的深度学习网络构建魔方复原培训集,并在其中搜索出当下的混乱状态和已经解决后的状态。

接下来,通过模拟数千次转动来估算魔方的混乱程度。完成了魔方的混乱程度估计之后,Johnson 开发的技术将通过深度神经网络的方式识别魔方复原前的一步,接下来是复原前的第二步、第三步…… 把这些数据积累起来再去解决魔方的复原问题将会非常容易,最终可以通过这些准备工作找出把混乱魔方复原的路径。

Johnson 解释道:"与其尝试学习如何解决将整个魔方复原,不如学习怎样把复原魔方这一较为复杂的问题转换为更容易的问题,然后使用更简单的方法来解决它。"

图|深度学习框架解决魔方问题的步骤(来源:Expert Systems)

目前,Johnson 仅将该方案用于魔方的复原,但他也表示,这只是一个示例,其实该技术也可用于解决一些更加复杂的问题。“比如消除留声机、早期唱片中旧录音的噪音。” 具体而言是,如果他设计的技术能学到一个 “原始的声音”、一个比 “原始的声音” 多一点噪音的声音以及一个比 “原始的声音” 多一点再多一点的声音…… 那么最终将通过这种循序渐进的方式还原最 “纯净的声音”。

Johnson 表示,相比其他方式,他设计的这种逐级学习更加有效,也更能凸显分步处理的优势。不过,他也表示,该种训练框架将需要比传统方案更多的对特定领域的知识。以本文为例,训练解决魔方的框架就需要复原魔方的能力。

未来该技术将可能用于解决科学工程的很多其他问题,如用来学习和更好地理解蛋白质在细胞内折叠的方式,从蛋白质呈现的三维结构点序列可以倒推其是怎样折叠成最终形态的。

原文标题:复原混乱的魔方需要几步?诺丁汉大学团队用深度学习告诉你

文章出处:【微信公众号:DeepTech深科技】欢迎添加关注!文章转载请注明出处。

责任编辑:haq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 人工智能
    +关注

    关注

    1810

    文章

    49221

    浏览量

    251539
  • 深度学习
    +关注

    关注

    73

    文章

    5569

    浏览量

    123088

原文标题:复原混乱的魔方需要几步?诺丁汉大学团队用深度学习告诉你

文章出处:【微信号:deeptechchina,微信公众号:deeptechchina】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    deepin 25成功适配魔方派3开发板

    近日,deepin(深度)社区宣布,deepin 25 已正式适配魔方派 3(RUBIK Pi 3)开发板,并完成产品兼容性认证!
    的头像 发表于 07-28 15:14 ?399次阅读

    广和通深度参与全国大学生嵌入式芯片与系统设计竞赛

    广和通深度参与全国大学生嵌入式芯片与系统设计竞赛(简称”嵌赛”),成为莘莘学子的同行者,科技的光点亮科技教育的创新星火。
    的头像 发表于 07-04 11:17 ?519次阅读

    凯米斯科技与宁波诺丁汉大学开展深度技术交流,共探水质监测新方向

    CHEMINS6月12日,宁波诺丁汉大学任教授率领微流控前沿研究团队莅临凯米斯科技调研指导,凯米斯科技总经理龚伟华、副总经理兼首席科学家王磊陪同考察。双方聚焦水质监测关键领域,围绕微流控芯片技术
    的头像 发表于 06-13 12:41 ?417次阅读
    凯米斯科技与宁波<b class='flag-5'>诺丁汉</b><b class='flag-5'>大学</b>开展<b class='flag-5'>深度</b>技术交流,共探水质监测新方向

    树莓派搞深度学习?TensorFlow启动!

    介绍本页面将指导您在搭载64位Bullseye操作系统的RaspberryPi4上安装TensorFlow。TensorFlow是一个专为深度学习开发的大型软件库,它消耗大量资源。您可以在
    的头像 发表于 03-25 09:33 ?538次阅读
    <b class='flag-5'>用</b>树莓派搞<b class='flag-5'>深度</b><b class='flag-5'>学习</b>?TensorFlow启动!

    军事应用中深度学习的挑战与机遇

    人工智能尤其是深度学习技术的最新进展,加速了不同应用领域的创新与发展。深度学习技术的发展深刻影响了军事发展趋势,导致战争形式和模式发生重大变化。本文将概述
    的头像 发表于 02-14 11:15 ?596次阅读

    BP神经网络与深度学习的关系

    BP神经网络与深度学习之间存在着密切的关系,以下是对它们之间关系的介绍: 一、BP神经网络的基本概念 BP神经网络,即反向传播神经网络(Backpropagation Neural Network
    的头像 发表于 02-12 15:15 ?989次阅读

    诺丁汉特伦特大学研发全红外波段高分辨率成像技术

    近日,英国诺丁汉特伦特大学(NTU)传来振奋人心的消息,该校Mohsen Rahmani教授(同时也是OEA期刊编委)的研究团队正在开发一项具有划时代意义的红外成像技术。 这项新技术能够实现全红外
    的头像 发表于 01-08 11:33 ?698次阅读

    清华大学师生到访智行者科技交流学习

    近日,清华大学 “技术创新原理与实践” 研究生课程师生一行到访智行者进行交流学习。作为课程实践环节的重要一站,此次来访开启了一场深度的参观学习之旅。智行者董事长&CEO张德兆先生作为清
    的头像 发表于 12-23 11:39 ?835次阅读

    智能魔方赛道再提速,智竞未来打造“学习+娱乐”生态

    在涌动着创新与变革的时代,魔方产品正沿着智能化的轨道加速前行。往昔,魔方仅仅依赖是一个玩具,而如今,智能化元素的融入使其实现了华丽蜕变,它已不再局限于传统益智玩具的范畴。
    的头像 发表于 12-17 17:37 ?685次阅读

    NPU在深度学习中的应用

    随着人工智能技术的飞速发展,深度学习作为其核心驱动力之一,已经在众多领域展现出了巨大的潜力和价值。NPU(Neural Processing Unit,神经网络处理单元)是专门为深度学习
    的头像 发表于 11-14 15:17 ?2176次阅读

    Pytorch深度学习训练的方法

    掌握这 17 种方法,最省力的方式,加速你的 Pytorch 深度学习训练。
    的头像 发表于 10-28 14:05 ?731次阅读
    Pytorch<b class='flag-5'>深度</b><b class='flag-5'>学习</b>训练的方法

    GPU深度学习应用案例

    GPU在深度学习中的应用广泛且重要,以下是一些GPU深度学习应用案例: 一、图像识别 图像识别是深度学习
    的头像 发表于 10-27 11:13 ?1603次阅读

    FPGA加速深度学习模型的案例

    FPGA(现场可编程门阵列)加速深度学习模型是当前硬件加速领域的一个热门研究方向。以下是一些FPGA加速深度学习模型的案例: 一、基于FPGA的AlexNet卷积运算加速 项目名称
    的头像 发表于 10-25 09:22 ?1343次阅读

    AI大模型与深度学习的关系

    AI大模型与深度学习之间存在着密不可分的关系,它们互为促进,相辅相成。以下是对两者关系的介绍: 一、深度学习是AI大模型的基础 技术支撑 :深度
    的头像 发表于 10-23 15:25 ?3077次阅读

    FPGA做深度学习能走多远?

    。FPGA的优势就是可编程可配置,逻辑资源多,功耗低,而且赛灵思等都在极力推广。不知道FPGA做深度学习未来会怎样发展,能走多远,你怎么看。 A:FPGA 在深度
    发表于 09-27 20:53