0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

全面了解人工智能的重要分支技术知识图谱

传感器技术 ? 来源:人工智能学家 ? 作者:人工智能学家 ? 2021-01-29 16:27 ? 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

知识图谱(Knowledge Graph)是人工智能的重要分支技术,它在2012年由谷歌提出,成为建立大规模知识的杀手锏应用,在搜索、自然语言处理、智能助手、电子商务等领域发挥着重要作用。知识图谱与大数据、深度学习,这三大“秘密武器”已经成为推动互联网和人工智能发展的核心驱动力之一。

知识图谱的概念与分类

知识图谱(Knowledge Graph)于2012年由谷歌提出并成功应用于搜索引擎当中。它以结构化的形式描述客观世界中概念、实体及其之间的关系,将互联网的信息表达成更接近人类认知世界的形式,提供了一种更好地组织、管理和理解互联网海量信息的能力。 知识图谱的分类方式很多,例如可以通过知识种类、构建方法等划分。从领域上来说,知识图谱通常分为两种:通用知识图谱、特定领域知识图谱。

常见的知识图谱示意图主要包含有三种节点:实体、概念、属性。 实体指的是具有可区别性且独立存在的某种事物。如某一个人、某一座城市、某一种植物、某一件商品等等。世界万物由具体事物组成,此指实体。实体是知识图谱中的最基本元素,不同的实体间存在不同的关系。 概念指的是具有同种特性的实体构成的集合,如国家、民族、书籍、电脑等。 属性则用于区分概念的特征,不同概念具有不同的属性。不同的属性值类型对应于不同类型属性的边。如果属性值对应的是概念或实体,则属性描述两个实体之间的关系,称为对象属性;如果属性值是具体的数值,则称为数据属性。

知识图谱的三大典型应用

现在以商业搜索引擎公司为首的互联网巨头已经意识到知识图谱的战略意义,纷纷投入重兵布局知识图谱,并对搜索引擎形态日益产生重要的影响。如何根据业务需求设计实现知识图谱应用,并基于数据特点进行优化调整,是知识图谱应用的关键研究内容。 知识图谱的典型应用包括语义搜索、智能问答以及可视化决策支持三种。

1、语义搜索

当前基于关键词的搜索技术在知识图谱的知识支持下可以上升到基于实体和关系的检索,称之为语义搜索。 语义搜索可以利用知识图谱可以准确地捕捉用户搜索意图,进而基于知识图谱中的知识解决传统搜索中遇到的关键字语义多样性及语义消歧的难题,通过实体链接实现知识与文档的混合检索。 语义检索需要考虑如何解决自然语言输入带来的表达多样性问题,同时需要解决语言中实体的歧义性问题。同时借助于知识图谱,语义检索需要直接给出满足用户搜索意图的答案,而不是包含关键词的相关网页的链接。

2、智能问答

问答系统(Question Answering,QA)是信息服务的一种高级形式,能够让计算机自动回答用户所提出的问题。不同于现有的搜索引擎,问答系统返回用户的不再是基于关键词匹配的相关文档排序,而是精准的自然语言形式的答案。

智能问答系统被看作是未来信息服务的颠覆性技术之一,亦被认为是机器具备语言理解能力的主要验证手段之一。

智能问答需要针对用户输入的自然语言进行理解,从知识图谱中或目标数据中给出用户问题的答案,其关键技术及难点包括准确的语义解析、正确理解用户的真实意图、以及对返回答案的评分评定以确定优先级顺序。

3、可视化决策支持

可视化决策支持是指通过提供统一的图形接口,结合可视化、推理、检索等,为用户提供信息获取的入口。例如,决策支持可以通过图谱可视化技术对创投图谱中的初创公司发展情况、投资机构投资偏好等信息进行解读,通过节点探索、路径发现、关联探寻等可视化分析技术展示公司的全方位信息。

可视化决策支持需要考虑的关键问题包括通过可视化方式辅助用户快速发现业务模式、提升可视化组件的交互友好程度、以及大规模图环境下底层算法的效率等。

知识工程的五个发展阶段

知识图谱技术属于知识工程的一部分。1994年,图灵奖获得者、知识工程的建立者费根鲍姆给出了知识工程定义——将知识集成到计算机系统,从而完成只有特定领域专家才能完成的复杂任务。 回顾知识工程这四十多年来的发展历程,我们可以将知识工程分成五个标志性的阶段:前知识工程时期、专家系统时期、万维网1.0时期、群体智能时期、以及知识图谱时期,如下图所示。

1)1950-1970时期:图灵测试—知识工程诞生前期 这一阶段主要有两个方法:符号主义和连结主义。符号主义认为物理符号系统是智能行为的充要条件,连结主义则认为大脑(神经元及其连接机制)是一切智能活动的基础。 这一时期的知识表示方法主要有逻辑知识表示、产生式规则、语义网络等。 2)1970-1990时期:专家系统—知识工程蓬勃发展期 由于通用问题求解强调利用人的求解问题的能力建立智能系统,但是忽略了知识对智能的支持,使人工智能难以在实际应用中发挥作用。从70年开始,人工智能开始转向建立基于知识的系统,通过“知识库+推理机”实现机器智能。 这一时期知识表示方法有新的演进,包括框架和脚本等80年代后期出现了很多专家系统的开发平台,可以帮助将专家的领域知识转变成计算机可以处理的知识。

3)1990-2000时期:万维网1.0 在1990年到2000年期间,出现了很多人工构建大规模知识库,包括广泛应用的英文WordNet,采用一阶谓词逻辑知识表示的Cyc常识知识库,以及中文的HowNet。 Web 1.0万维网的产生为人们提供了一个开放平台,使用HTML定义文本的内容,通过超链接把文本连接起来,使得大众可以共享信息。W3C提出的可扩展标记语言XML,实现对互联网文档内容的结构通过定义标签进行标记,为互联网环境下大规模知识表示和共享奠定了基础。 4)2000-2006时期:群体智能 万维网的出现使得知识从封闭知识走向开放知识,从集中构建知识成为分布群体智能知识。原来专家系统是系统内部定义的知识,现在可以实现知识源之间相互链接,可以通过关联来产生更多的知识而非完全由固定人生产。 这个过程中出现了群体智能,最典型的代表就是维基百科,实际上是用户去建立知识,体现了互联网大众用户对知识的贡献,成为今天大规模结构化知识图谱的重要基础。

5)2006年至今:知识图谱—知识工程新发展时期 “知识就是力量”,将万维网内容转化为能够为智能应用提供动力的机器可理解和计算的知识是这一时期的目标。从2006年开始,大规模维基百科类富结构知识资源的出现和网络规模信息提取方法的进步,使得大规模知识获取方法取得了巨大进展。 当前自动构建的知识库已成为语义搜索、大数据分析、智能推荐和数据集成的强大资产,在大型行业和领域中正在得到广泛使用。典型的例子是谷歌收购Freebase后在2012年推出的知识图谱(Knowledge Graph),Facebook的图谱搜索,Microsoft Satori以及商业、金融、生命科学等领域特定的知识库。

原文标题:从概念到实践 | 全面了解知识图谱

文章出处:【微信公众号:传感器技术】欢迎添加关注!文章转载请注明出处。

责任编辑:haq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 人工智能
    +关注

    关注

    1810

    文章

    49220

    浏览量

    251467
  • 知识图谱
    +关注

    关注

    2

    文章

    132

    浏览量

    8059

原文标题:从概念到实践 | 全面了解知识图谱

文章出处:【微信号:WW_CGQJS,微信公众号:传感器技术】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    挖到宝了!人工智能综合实验箱,高校新工科的宝藏神器

    技术自主可控 在如今这个科技竞争激烈的时代,国产化硬件的重要性不言而喻。比邻星人工智能综合实验箱就做到了这一点,采用国产化硬件,积极推进全行业产业链上下游环节的国产化进程,把国产自主可控的软硬件平台
    发表于 08-07 14:30

    挖到宝了!比邻星人工智能综合实验箱,高校新工科的宝藏神器!

    技术自主可控 在如今这个科技竞争激烈的时代,国产化硬件的重要性不言而喻。比邻星人工智能综合实验箱就做到了这一点,采用国产化硬件,积极推进全行业产业链上下游环节的国产化进程,把国产自主可控的软硬件平台
    发表于 08-07 14:23

    最新人工智能硬件培训AI 基础入门学习课程参考2025版(大模型篇)

    人工智能大模型重塑教育与社会发展的当下,无论是探索未来职业方向,还是更新技术储备,掌握大模型知识都已成为新时代的必修课。从职场上辅助工作的智能助手,到课堂用于学术研究的
    发表于 07-04 11:10

    B10 BMS技术知识初探(上、下)

    课程名称: BMS技术知识初探课程目标: 可充电电池已是人们生活中不可缺少的组成部分,基于电池技术为基础的电动汽车、储能行业,更是新能源发展的重要标志。而BMS技术是电池安全的
    发表于 05-02 11:04

    探究人工智能发展前沿:智能体的演进及其社会影响

    了在推进这些技术时必须考虑的伦理问题(如透明度和问责制)以及建立有效管理框架和跨部门合作的重要性,为寻求深入了解人工智能体带来的机遇与挑战的读者提供了宝贵的信息。 该报告首先定义了人工智能
    的头像 发表于 02-10 09:44 ?872次阅读
    探究<b class='flag-5'>人工智能</b>发展前沿:<b class='flag-5'>智能</b>体的演进及其社会影响

    软通动力入选《人工智能数据标注产业图谱

    近日,由中国信息通信研究院、中国人工智能产业发展联盟牵头,联合中国电信集团、沈阳市数据局、保定高新区等70多家单位编制完成并发布了《人工智能数据标注产业图谱》。
    的头像 发表于 12-03 10:18 ?524次阅读

    嵌入式和人工智能究竟是什么关系?

    重要作用。在未来,随着嵌入式系统和人工智能技术的不断进步,我们可以预见更多创新应用的出现,为社会发展和生活品质的提升带来更多可能性。
    发表于 11-14 16:39

    三星自主研发知识图谱技术,强化Galaxy AI用户体验与数据安全

    据外媒11月7日报道,三星电子全球AI中心总监Kim Dae-hyun近日透露,公司正致力于自主研发知识图谱技术,旨在进一步优化Galaxy AI的功能,提升其易用性,并加强用户数据的隐私保护。
    的头像 发表于 11-07 15:19 ?1452次阅读

    《AI for Science:人工智能驱动科学创新》第6章人AI与能源科学读后感

    不仅提高了能源的生产效率和管理水平,还为未来的可持续发展提供了有力保障。随着技术的不断进步和应用场景的不断拓展,人工智能将在能源科学领域发挥更加重要的作用。 总结 《AI for Science:
    发表于 10-14 09:27

    AI for Science:人工智能驱动科学创新》第4章-AI与生命科学读后感

    研究的进程。从蛋白质结构预测到基因测序与编辑,再到药物研发,人工智能技术在生命科学的各个层面都发挥着重要作用。特别是像AlphaFold这样的工具,成功解决了困扰生物学界半个多世纪的蛋白质折叠问题,将
    发表于 10-14 09:21

    《AI for Science:人工智能驱动科学创新》第二章AI for Science的技术支撑学习心得

    ,推动科学研究的深入发展。 总结 通过阅读《AI for Science:人工智能驱动科学创新》第二章,我对AI for Science的技术支撑有了更加全面和深入的理解。我深刻认识到AI在科学研究中
    发表于 10-14 09:16

    《AI for Science:人工智能驱动科学创新》第一章人工智能驱动的科学创新学习心得

    ,无疑为读者铺设了一条探索人工智能(AI)如何深刻影响并推动科学创新的道路。在阅读这一章后,我深刻感受到了人工智能技术在科学领域的广泛应用潜力以及其带来的革命性变化,以下是我个人的学习心得: 1.
    发表于 10-14 09:12

    risc-v在人工智能图像处理应用前景分析

    其在人工智能图像处理领域的应用提供更多支持。 标准化和规范化推进 :为了降低RISC-V的碎片化风险并促进其在全球范围内的广泛应用,标准化和规范化将是未来的重要趋势。这将有助于提升RISC-V技术
    发表于 09-28 11:00

    名单公布!【书籍评测活动NO.44】AI for Science:人工智能驱动科学创新

    ! 《AI for Science:人工智能驱动科学创新》 这本书便将为读者徐徐展开AI for Science的美丽图景,与大家一起去了解人工智能究竟帮科学家做了什么? 人工智能
    发表于 09-09 13:54

    报名开启!深圳(国际)通用人工智能大会将启幕,国内外大咖齐聚话AI

    呈现、产业展览、技术交流、学术论坛于一体的世界级人工智能合作交流平台。本次大会暨博览会由工业和信息化部政府采购中心、广东省工商联、前海合作区管理局、深圳市工信局等单位指导,深圳市人工智能产业协会主办
    发表于 08-22 15:00