0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

关于碳化硅的抗宇宙射线能力

QjeK_yflgybdt ? 来源:英飞凌工业半导体 ? 作者:英飞凌工业半导体 ? 2021-02-13 17:24 ? 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

《碳化硅的抗宇宙射线能力》

半导体器件在其整个生命周期中都会受到核粒子辐射。这种辐射源自于高能宇宙粒子撞击大气层外围,并通过传播与核反应在低海拔处形成核粒子雨,参见图16。

图16.在之后由宇宙粒子引发的粒子雨示意图

图17.在高海拔处相对于海平面的中子通量

对于地球大气层以上的空间应用,宇宙辐射主要由质子、离子和伽玛射线组成。对于最高达到飞机飞行高度的地面应用,大气层能起到很大的屏蔽作用,辐射环境取决于地平面的通量密度约为20个中子/cm?/小时的中子。但如图17所示,中子通量随海拔高度呈指数增长,因此在考虑宇宙辐射导致的失效率时必须考虑到海拔高度。 尽管地面上的中子通量密度相当低,但许多功率半导体应用都要求单一器件失效率位于1-100FIT(失效/时间)或更低的范围内。(1FIT=109个运行小时数内有1个失效)因此有必要弄清楚并了解宇宙辐射导致功率半导体器件失效的机制,并根据器件和应用参数推导出一个加速模型,另请参见。 图18所示为在阻断或反向偏压条件下运行的功率半导体器件的基本失效机制。该示意图呈现了在阻断p-i-n二极管结构中的电场分布。入射宇宙粒子可能触发与晶格原子的核反应,反冲离子可激发由电子和空穴组成的带电等离子体。在正常的反向偏压运行条件下,电场呈三角形或梯形(蓝色曲线)。当存在由入射宇宙粒子诱发的带电等离子体时,电场在等离子体中被局部屏蔽。在等离子体区的边缘甚至会产生更强的电场,这可能导致产生通过活跃区进一步传播开去的雪崩(红色曲线),也就是所谓的“电子流”。

图18. 在之后垂直功率器件中的宇宙辐射失效机制示意图。为简单起见,只考虑被施加反向偏压的一维p-i-n二极管结构

等离子体通道和随后的流光可使器件发生短路,然后再被耗散能摧毁。这就是所谓的“单粒子烧毁”(SEB)。在碳化硅和硅中,由宇宙辐射引起的失效率随入射时器件中存在的电场呈指数级增长。具有相似电场的器件失效率也相似。在过去的几十年中进行了许多加速试验,这些试验表明,当施加的电压被归一化为实际雪崩击穿电压时,由宇宙射线诱发的失效率相似,参见图19。

图19.对不同的SiC技术和电压等级进行大量试验后测得的FIT率。每项试验所施加的电压被归一化为测得的实际雪崩击穿电压VBR。中报道了类似的结果。由于在原则上试验中的失效概率很低而加速度很大,所以试验结果呈现出位于1到2个数量级的范围内的相当大的分散性。为简单起见,该图中没有显示源自于有限数量的被测器件的每一个实验的统计误差线。

这些试验是用质子加速器和散裂中子源进行的,它们可通过高粒子通量密度实现108数量级的高加速因子。图19所示为,失效率与施加的反向电压或阻断电压存在明显的指数级关系。由于每个器件在原则上的失效概率很低,且试验中的统计数据有限,所以试验结果呈现出位于1到2个数量级的范围内的分散性。除去这一分散性,还可通过这些结果推断出一个平均指数电压加速模型。为验证该加速模型,在进行基于人工离子源的加速试验的同时,还在高海拔和大气中子的自然通量下进行储存试验。

凭借宇宙射线诱发的失效率与雪崩击穿电压的关系,就可以优化功率器件的稳健性。一般而言,垂直型功率器件可以设计更高的雪崩击穿电压,从而可以通过更大的厚度和更低的漂移层或基底层掺杂来实现更强的抗宇宙辐射能力。这又意味着正向导通损耗将在一定程度上降低,即,在抗辐射能力与通态损耗之间取得平衡。

为计算宇宙辐射导致的器件或模块失效率,必须考虑到特定应用的条件,即施加的电压和海拔高度与相应的运行小时数之间的关系。因此,不可能为某一技术或应用提供一个宇宙辐射失效率的数字。相反,英飞凌支持客户通过其遍布全球的、经验丰富的、且经过训练的应用工程师网络,研究如何根据英飞凌试验数据、客户应用条件和应用细节信息去计算总体失效率。

英飞凌永远支持开发宇宙辐射实验的新技术和新产品,以便验证该模型,并确保在应用和器件设计中达到实现恰当平衡所需的抗辐射能力。结果表明,就宇宙射线导致的基本失效机制及其与运行条件的关系而言,硅IGBT技术与SiC功率器件之间只有相当细微的差异。

原文标题:碳化硅的抗宇宙射线能力

文章出处:【微信公众号:英飞凌工业半导体】欢迎添加关注!文章转载请注明出处。

责任编辑:haq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 半导体
    +关注

    关注

    335

    文章

    29147

    浏览量

    242184
  • 碳化硅
    +关注

    关注

    25

    文章

    3098

    浏览量

    50756

原文标题:碳化硅的抗宇宙射线能力

文章出处:【微信号:yflgybdt,微信公众号:英飞凌工业半导体】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    碳化硅晶圆特性及切割要点

    01衬底碳化硅衬底是第三代半导体材料中氮化镓、碳化硅应用的基石。碳化硅衬底以碳化硅粉末为主要原材料,经过晶体生长、晶锭加工、切割、研磨、抛光、清洗等制造过程后形成的单片材料。按照电学性
    的头像 发表于 07-15 15:00 ?263次阅读
    <b class='flag-5'>碳化硅</b>晶圆特性及切割要点

    SiC碳化硅二极管公司成为国产碳化硅功率器件行业出清的首批对象

    器件能力的企业之所以面临被淘汰的风险,主要源于以下多维度原因: ? ? 1. 碳化硅二极管技术门槛低导致市场同质化与价格战 碳化硅二极管(如肖特基二极管)技术相对成熟,结构简单,进入门槛较低。国内众多企业涌入这一领域,导致产能过
    的头像 发表于 02-28 10:34 ?472次阅读

    SiC碳化硅MOSFET功率器件双脉冲测试方法介绍

    碳化硅革新电力电子,以下是关于碳化硅(SiC)MOSFET功率器件双脉冲测试方法的详细介绍,结合其技术原理、关键步骤与应用价值,助力电力电子领域的革新。
    的头像 发表于 02-05 14:34 ?956次阅读
    SiC<b class='flag-5'>碳化硅</b>MOSFET功率器件双脉冲测试方法介绍

    碳化硅薄膜沉积技术介绍

    多晶碳化硅和非晶碳化硅在薄膜沉积方面各具特色。多晶碳化硅以其广泛的衬底适应性、制造优势和多样的沉积技术而著称;而非晶碳化硅则以其极低的沉积温度、良好的化学与机械性能以及广泛的应用前景而
    的头像 发表于 02-05 13:49 ?1009次阅读
    <b class='flag-5'>碳化硅</b>薄膜沉积技术介绍

    碳化硅的耐高温性能

    、高强度和高耐磨性。它由硅和碳原子以1:1的比例组成,形成一种稳定的晶体结构。碳化硅的晶体结构赋予了它许多独特的性质,其中最引人注目的是其耐高温能力。 2. 耐高温性能 碳化硅的耐高温性能主要体现在以下几个方面: 2.1 高熔点
    的头像 发表于 01-24 09:15 ?1944次阅读

    碳化硅在半导体中的作用

    电导率、高热导率、高抗辐射能力、高击穿电场和高饱和电子漂移速度等物理特性。这些特性使得碳化硅能够承受高温、高压、高频等苛刻环境,同时保持较高的电学性能。 二、碳化硅在半导体器件中的应用 功率器件 :
    的头像 发表于 01-23 17:09 ?1571次阅读

    产SiC碳化硅MOSFET功率模块在工商业储能变流器PCS中的应用

    *附件:国产SiC碳化硅MOSFET功率模块在工商业储能变流器PCS中的应用.pdf
    发表于 01-20 14:19

    什么是MOSFET栅极氧化层?如何测试SiC碳化硅MOSFET的栅氧可靠性?

    随着电力电子技术的不断进步,碳化硅MOSFET因其高效的开关特性和低导通损耗而备受青睐,成为高功率、高频应用中的首选。作为碳化硅MOSFET器件的重要组成部分,栅极氧化层对器件的整体性能和使用寿命
    发表于 01-04 12:37

    碳化硅在新能源领域的应用 碳化硅在汽车工业中的应用

    碳化硅在新能源领域的应用 1. 太阳能光伏 碳化硅材料在太阳能光伏领域主要应用于制造高性能的太阳能电池。由于其高热导率和良好的化学稳定性,碳化硅可以作为太阳能电池的基底材料,提高电池的效率和寿命
    的头像 发表于 11-29 09:31 ?1311次阅读

    碳化硅在半导体产业中的发展

    ,化学式为SiC,是用石英砂、石油焦(或煤焦)、木屑(生产绿色碳化硅时需要加食盐)等原料通过电阻炉高温冶炼而成。它具有高击穿电场、高饱和电子漂移速度、高热导率、高抗辐射能力等特点,这些特性使得碳化硅成为制作高温、高
    的头像 发表于 11-29 09:30 ?1069次阅读

    碳化硅的应用领域 碳化硅材料的特性与优势

    碳化硅的应用领域 碳化硅(SiC),作为一种宽禁带半导体材料,因其独特的物理和化学特性,在多个领域展现出广泛的应用潜力。以下是碳化硅的一些主要应用领域: 电子器件 : 功率器件 :碳化硅
    的头像 发表于 11-29 09:27 ?5715次阅读

    碳化硅衬底,进化到12英寸!

    电子发烧友网报道(文/梁浩斌)碳化硅产业当前主流的晶圆尺寸是6英寸,并正在大规模往8英寸发展,在最上游的晶体、衬底,业界已经具备大量产能,8英寸的碳化硅晶圆产线也开始逐渐落地,进入试产阶段。 ? 让
    的头像 发表于 11-21 00:01 ?4324次阅读
    <b class='flag-5'>碳化硅</b>衬底,进化到12英寸!

    碳化硅功率器件的工作原理和应用

    碳化硅(SiC)功率器件近年来在电力电子领域取得了显著的关注和发展。相比传统的硅(Si)基功率器件,碳化硅具有许多独特的优点,使其在高效能、高频率和高温环境下的应用中具有明显的优势。本文将探讨碳化硅功率器件的原理、优势、应用及其
    的头像 发表于 09-13 11:00 ?1368次阅读
    <b class='flag-5'>碳化硅</b>功率器件的工作原理和应用

    碳化硅功率器件的优点和应用

    碳化硅(SiliconCarbide,简称SiC)功率器件是近年来电力电子领域的一项革命性技术。与传统的硅基功率器件相比,碳化硅功率器件在性能和效率方面具有显著优势。本文将深入探讨碳化硅功率器件的基本原理、优点、应用领域及其发展
    的头像 发表于 09-11 10:44 ?1262次阅读
    <b class='flag-5'>碳化硅</b>功率器件的优点和应用