0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

光子表面波促进单层石墨烯的红外完美吸收

电子设计 ? 来源:电子设计 ? 作者:电子设计 ? 2020-12-26 01:31 ? 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

引言

近年来,石墨烯由于其独特的物理、光电机械优势,在光子,光电子及相关领域受到广泛关注,例如:光电转换/探测领域。然而,石墨烯的低吸收,特别是单层或少数层石墨烯,仍然是限制石墨烯基光电子系统性能的关键因素之一。单层石墨烯的吸收率仅为2.3%;对于强光照射,由于导带被填满(价带被抽空),带间跃迁被阻断,石墨烯光吸收达到饱和。因此,提高石墨烯吸收率是其广泛应用的先决条件。另外,石墨烯可激发本征表面等离子体激元(SPPs),相比于金属SPPs,其拥有更高的电磁场局域,更长的极化激元寿命以及可调谐的等离子体色散关系。基于石墨烯本征SPPs的光电探测器可以使光电流增强一个数量级。值得注意的是,针对石墨烯材料的陷光结构大部分基于复杂的纳米结构,包括超材料、由几十对介质膜层组成的微腔结构或利用纳米图案化金属体系激发SPPs。此外,金属的存在常常导致较高的寄生吸收,进一步限制了石墨烯的吸收。因此,石墨烯光电应用迫切需要结构简单且易制作的吸收增强方案,以促进其发展。

成果简介

近日,苏州大学李孝峰(通讯作者)课题组在Nano Energy上发表了题为“Photonic surface waves enabled perfect infrared absorption by monolayer graphene”的文章。研究团队提出了基于纯介质平面系统的光子表面波辅助增强石墨烯光吸收,通过7层介质薄膜及耦合棱镜激发布洛赫表面波(BSW)并产生电场增强,实现了厚度约为0.34 nm的单层石墨烯在红外波段的完全光吸收(1310nm,工作波长可通过结构参数调节)。在详细研究BSW激发条件的基础上,发现基于非周期结构的广义表面波也可以实现石墨烯完美吸收。平面纯介质表面波系统为低成本和高性能的二维器件应用提供了有价值的方案。

图文导读

图1布洛赫面波的色散曲线和电场、磁场切向分量的分布

(a)布洛赫面波的色散曲线(红线)。灰色(白色)区域表示理想光子晶体的允带(禁带);

(b)1.31 μm入射波长、45°入射角下,BSW器件的电场和磁场切向分量分布,即|Ey|(红线)和|Hx|(蓝线)。

图2 BSW辅助的石墨烯完美吸收器

(a) BSW辅助的石墨烯完美吸收体(B-SGPA)示意图;

(b)45°入射角下B-SGPA的反射,透射和吸收光谱;

(c)电场和磁场切向分量的分布;

(d)器件吸收随入射角和波长的变化。

图3 B-SGPA导纳轨迹

向前(a)和向后(c)光学传输矩阵法计算得到的导纳轨迹。

其中插图是放大视图,相应的图层编号见图2a;其中,红色实线、黑色实线和灰色虚线分别对应缺陷层、光子晶体MgF2层和光子晶体TiO2层内的导纳变化。

从导纳轨迹提取的层与层之间界面处的导纳实部(b)和虚部(d)。

图4结构及材料参数对石墨烯吸收的影响

(a)光子晶体对数Npair、(b)缺陷层厚度ddefect、(c)TiO2层厚度dTiO2、(d)MgF2层厚度dMgF2和(e)石墨烯费米能级EF对吸收率的影响;(f)势垒模型示意图。

图5 通过控制缺陷层和PC层的厚度,实现B-SGPA导纳匹配

图6 表面波辅助石墨烯完美吸收器(SGPA)

(a) SGPA的导纳图;

(b)电场和磁场切向分量的分布;

(c)入射角为45°时SGPA的吸收光谱;

图7 B-SGPA的制造程序

小结

该设计从表面波的光学基础、传输矩阵计算、导纳轨迹控制、器件吸收性能到扩展器件设计逐渐深入。使用导纳图/匹配以及虚拟腔和势垒模型揭示BSW的物理和激发。BSW系统具有高度可调性,可轻易控制石墨烯吸收率及B-SGPA工作波长。此外,通过改变导纳轨迹并调整器件参数,该研究提出B-SGPA的导纳设计方案,能够更加灵活地实现导纳匹配,从而可以采用非周期系统激发一般的表面电磁波,并实现石墨烯完美吸收。这项研究提供了一个全新的石墨烯吸收增强方案,通过使用简单的薄膜系统,而不是金属或复杂的纳米结构系统,实现极高的光学性能。基于表面电磁波的石墨烯完美吸收器不仅有助于降低制造成本,且拥有与现有光电系统更好的兼容性;B-SGPA的窄带和高吸收响应也可应用于高效的光电转换器件和超灵敏传感器中。

审核编辑:符乾江
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 光子
    +关注

    关注

    0

    文章

    116

    浏览量

    14932
  • 石墨烯
    +关注

    关注

    54

    文章

    1598

    浏览量

    81985
  • 光学传感
    +关注

    关注

    0

    文章

    89

    浏览量

    9058
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    一文了解什么是石墨拉曼光谱表征技术

    拉曼光谱因其快速、无损、高空间分辨率的特性,已成为石墨(包括单层、多层及氧化石墨)层数、缺陷、结晶质量与掺杂状态的首选表征手段。本文以G
    的头像 发表于 08-05 15:30 ?132次阅读
    一文了解什么是<b class='flag-5'>石墨</b><b class='flag-5'>烯</b>拉曼光谱表征技术

    EastWave应用:光场与石墨和特异介质相互作用的研究

    图 1-1模型示意图 本案例使用“自动计算透反率模式”研究石墨和特异介质的相互作用,分析透反率在有无石墨存在情况下的变化。光源处于近红外
    发表于 02-21 08:42

    一文速览石墨的奥秘

    石墨属于二维碳纳米材料,具有优秀的力学特性和超强导电性导热性等出色的材料特性,英国曼彻斯特大学物理学家安德烈·盖姆和康斯坦丁·诺沃肖洛夫,由于成功从石墨中分离出石墨
    的头像 发表于 02-18 14:11 ?897次阅读
    一文速览<b class='flag-5'>石墨</b><b class='flag-5'>烯</b>的奥秘

    Paragraf引领石墨传感技术前沿

    原因是,制造和集成大多数(但不是全部)大规模电子产品所需的单层石墨要困难得多。这也是因为,作为一种新材料,石墨在使用前必须经过严格的监管
    的头像 发表于 02-18 10:18 ?465次阅读

    增强石墨基器件稳定性的方案

    具有优异的特性--高导电性、机械强度和渗透性,使其成为一种前景广阔的膜技术材料,可应用于单分子传感、离子过滤和能量收集等领域。然而,它在液体环境中的实际应用却因容易分层而受到阻碍。作为二维晶格中的单层碳原子,石墨
    的头像 发表于 02-14 10:56 ?406次阅读

    一文解析中国石墨的现状及未来

    中国石墨现状 产业规模持续增长:中国石墨市场规模增长迅猛,2017年为70亿元,2022年达335亿元,同比增长26.42%,2023年约为386亿元。 企业发展态势良好:截至20
    的头像 发表于 01-28 15:20 ?1158次阅读

    石墨的分类

    石墨是一种由碳原子以sp?杂化轨道构成的二维纳米材料,具有独特的六角蜂窝状晶格结构。根据不同的分类标准,石墨可以分为多种类型: 按层数分类:
    的头像 发表于 01-14 14:37 ?2096次阅读

    ?石墨的基本特性?,制备方法?和应用领域

    ?石墨技术是一种基于石墨这种新型材料的技术,石墨由碳原子以sp?杂化键合形成
    的头像 发表于 01-14 11:02 ?969次阅读

    石墨材料如何推动量产芯片的新时代?

    石墨,这种因其多种结构、热学和电子特性而受到广泛赞誉的二维(2D)材料,已从实验室走向如今可供购买的量产微芯片。这标志着电子行业先进材料转型的早期阶段。这篇文章将介绍石墨是如何走到
    的头像 发表于 12-25 10:42 ?1051次阅读
    <b class='flag-5'>石墨</b><b class='flag-5'>烯</b>材料如何推动量产芯片的新时代?

    华中科技大学:通过自组装单层加强石墨器件的热管理

    二维石墨因其卓越的电学、光学和热学特性,在后摩尔时代成为硅的有力竞争者。然而,当石墨与无定形基底耦合时,其平面内热导率会发生强烈衰减。同时,石墨
    的头像 发表于 12-17 11:23 ?984次阅读
    华中科技大学:通过自组装<b class='flag-5'>单层</b>加强<b class='flag-5'>石墨</b><b class='flag-5'>烯</b>器件的热管理

    石墨化学镀铜对放电等离子烧结石墨增强铝基复合材料组织和性能的影响

    铝基复合材料具有强度高、耐磨性能良好、尺寸稳定性佳等特点,在航空航天、惯性导航、?红外探测等领域得到广泛应用。铝基复合材料的增强体通常为碳化硅颗粒、碳纤维、氧化锆等。?石墨是2004年发现的由
    的头像 发表于 11-27 09:27 ?1206次阅读
    <b class='flag-5'>石墨</b><b class='flag-5'>烯</b>化学镀铜对放电等离子烧结<b class='flag-5'>石墨</b><b class='flag-5'>烯</b>增强铝基复合材料组织和性能的影响

    石墨发热油墨为汽车后视镜带来智能电加热保护

    Haydale石墨发热油墨采用了先进的石墨纳米材料,这是一种极为强大的导电材料。通过将石墨
    发表于 11-15 15:55

    石墨和白石墨(氮化硼)的作用区别

    、导电性、导热性以及机械强度。单层石墨的厚度仅为0.335纳米,是头发直径的二十万分之一,且几乎完全透明,只吸收约2.3%的光。这些特性使得石墨
    的头像 发表于 10-06 08:01 ?1207次阅读
    <b class='flag-5'>石墨</b><b class='flag-5'>烯</b>和白<b class='flag-5'>石墨</b><b class='flag-5'>烯</b>(氮化硼)的作用区别

    什么是石墨和白石墨

    、导电性、导热性以及机械强度。单层石墨的厚度仅为0.335纳米,是头发直径的二十万分之一,且几乎完全透明,只吸收约2.3%的光。这些特性使得石墨
    的头像 发表于 09-30 08:02 ?1105次阅读
    什么是<b class='flag-5'>石墨</b><b class='flag-5'>烯</b>和白<b class='flag-5'>石墨</b><b class='flag-5'>烯</b>?

    利用HDPlas等离子功能化工艺,可增强CGM动态血糖仪微型传感器性能

    工艺促进纳米材料的有效分散,并允许改变表面化学以改善物理和电性能。 通过HDPlas工艺获得了石墨油墨增强的导电性,10Ω/sq,对应厚度25.4μm,
    发表于 09-10 15:45