0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

深度解析鸿蒙内核最重要的结构体

鸿蒙系统HarmonyOS ? 来源:my.oschina ? 作者:鸿蒙内核源码分析 ? 2021-04-25 11:58 ? 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

谁是鸿蒙内核最重要的结构体?

答案一定是:LOS_DL_LIST(双向链表),它长这样.

typedef struct LOS_DL_LIST {//双向链表,内核最重要结构体
    struct LOS_DL_LIST *pstPrev; /**< Current node's pointer to the previous node *///前驱节点(左手)
    struct LOS_DL_LIST *pstNext; /**< Current node's pointer to the next node *///后继节点(右手)
} LOS_DL_LIST;

结构体够简单了吧,只有前后两个指向自己的指针,但恰恰是因为太简单,所以才太不简单. 就像氢原子一样,宇宙中无处不在,占比最高,原因是因为它最简单,最稳定!

内核的各自模块都能看到双向链表的身影,下图是各处初始化双向链表的操作,因为太多了,只截取了部分:

pIYBAGCE6DKAAf-bAARvRfH2FV4405.png

很多人问图怎么来的,source insight 4.0是阅读大型C/C++工程的必备工具,要用4.0否则中文有乱码.

可以豪不夸张的说理解LOS_DL_LIST及相关函数是读懂鸿蒙内核的关键。前后指针(注者后续将比喻成一对左右触手)灵活的指挥着系统精准的运行,越是深入分析内核源码,越能感受到内核开发者对LOS_DL_LIST非凡的驾驭能力,笔者仿佛看到了无数双手前后相连,拉起了一个个双向循环链表,把指针的高效能运用到了极致,这也许就是编程的艺术吧!这么重要的结构体还是需详细讲解一下.

基本概念

双向链表是指含有往前和往后两个方向的链表,即每个结点中除存放下一个节点指针外,还增加一个指向其前一个节点的指针。其头指针head是唯一确定的。从双向链表中的任意一个结点开始,都可以很方便地访问它的前驱结点和后继结点,这种数据结构形式使得双向链表在查找时更加方便,特别是大量数据的遍历。由于双向链表具有对称性,能方便地完成各种插入、删除等操作,但需要注意前后方向的操作。

有好几个同学问数据在哪? 确实LOS_DL_LIST这个结构看起来怪怪的,它竟没有数据域!所以看到这个结构的人第一反应就是我们怎么访问数据?其实LOS_DL_LIST不是拿来单独用的,它是寄生在内容结构体上的,谁用它谁就是它的数据.看图就明白了.

pIYBAGCE6EaAToV1AADMtl72i_g471.png

功能接口

鸿蒙系统中的双向链表模块为用户提供下面几个接口。

pIYBAGCE6FOAL5ATAAEsiAQ3PvI596.png

请结合下面的代码和图去理解双向链表,不管花多少时间,一定要理解它的插入/删除动作,否则后续内容将无从谈起.

//将指定节点初始化为双向链表节点
LITE_OS_SEC_ALW_INLINE STATIC INLINE VOID LOS_ListInit(LOS_DL_LIST *list)
{
    list->pstNext = list;
    list->pstPrev = list;
}

//将指定节点挂到双向链表头部
LITE_OS_SEC_ALW_INLINE STATIC INLINE VOID LOS_ListAdd(LOS_DL_LIST *list, LOS_DL_LIST *node)
{
    node->pstNext = list->pstNext;
    node->pstPrev = list;
    list->pstNext->pstPrev = node;
    list->pstNext = node;
}
//将指定节点从链表中删除,自己把自己摘掉
LITE_OS_SEC_ALW_INLINE STATIC INLINE VOID LOS_ListDelete(LOS_DL_LIST *node)
{
    node->pstNext->pstPrev = node->pstPrev;
    node->pstPrev->pstNext = node->pstNext;
    node->pstNext = NULL;
    node->pstPrev = NULL;
}

pIYBAGCE6GqAMe0lAAHgHk5dkIE576.png

强大的宏

除了内联函数,对双向遍历的初始化,定位,遍历 等等操作提供了更强大的宏支持.使内核以极其简洁高效的代码实现复杂逻辑的处理.

//定义一个节点并初始化为双向链表节点
#define LOS_DL_LIST_HEAD(list) LOS_DL_LIST list = { &(list), &(list) }

//获取指定结构体内的成员相对于结构体起始地址的偏移量
#define LOS_OFF_SET_OF(type, member) ((UINTPTR)&((type *)0)->member)

//获取包含链表的结构体地址,接口的第一个入参表示的是链表中的某个节点,第二个入参是要获取的结构体名称,第三个入参是链表在该结构体中的名称
#define LOS_DL_LIST_ENTRY(item, type, member) \
    ((type *)(VOID *)((CHAR *)(item) - LOS_OFF_SET_OF(type, member)))

//遍历双向链表
#define LOS_DL_LIST_FOR_EACH(item, list) \
    for (item = (list)->pstNext;         \
         (item) != (list);               \
         item = (item)->pstNext)

//遍历指定双向链表,获取包含该链表节点的结构体地址,并存储包含当前节点的后继节点的结构体地址
#define LOS_DL_LIST_FOR_EACH_ENTRY_SAFE(item, next, list, type, member)               \
    for (item = LOS_DL_LIST_ENTRY((list)->pstNext, type, member),                     \
         next = LOS_DL_LIST_ENTRY((item)->member.pstNext, type, member);              \
         &(item)->member != (list);                                                   \
         item = next, next = LOS_DL_LIST_ENTRY((item)->member.pstNext, type, member))

//遍历指定双向链表,获取包含该链表节点的结构体地址
#define LOS_DL_LIST_FOR_EACH_ENTRY(item, list, type, member)             \
    for (item = LOS_DL_LIST_ENTRY((list)->pstNext, type, member);        \
         &(item)->member != (list);                                      \
         item = LOS_DL_LIST_ENTRY((item)->member.pstNext, type, member))

例如在调度算法中获取当前最高优先级的任务时,就需要遍历整个进程和进程任务的所有就绪列表.LOS_DL_LIST_FOR_EACH_ENTRY高效的解决了层层循环的问题,让代码简洁易懂.

LITE_OS_SEC_TEXT_MINOR LosTaskCB *OsGetTopTask(VOID)
{
    UINT32 priority, processPriority;
    UINT32 bitmap;
    UINT32 processBitmap;
    LosTaskCB *newTask = NULL;
#if (LOSCFG_KERNEL_SMP == YES)
    UINT32 cpuid = ArchCurrCpuid();
#endif
    LosProcessCB *processCB = NULL;
    processBitmap = g_priQueueBitmap;
    while (processBitmap) {
        processPriority = CLZ(processBitmap);
        LOS_DL_LIST_FOR_EACH_ENTRY(processCB, &g_priQueueList[processPriority], LosProcessCB, pendList) {
            bitmap = processCB->threadScheduleMap;
            while (bitmap) {
                priority = CLZ(bitmap);
                LOS_DL_LIST_FOR_EACH_ENTRY(newTask, &processCB->threadPriQueueList[priority], LosTaskCB, pendList) {
#if (LOSCFG_KERNEL_SMP == YES)
                    if (newTask->cpuAffiMask & (1U << cpuid)) {
#endif
                        newTask->taskStatus &= ~OS_TASK_STATUS_READY;
                        OsPriQueueDequeue(processCB->threadPriQueueList,
                                          &processCB->threadScheduleMap,
                                          &newTask->pendList);
                        OsDequeEmptySchedMap(processCB);
                        goto OUT;
#if (LOSCFG_KERNEL_SMP == YES)
                    }
#endif
                }
                bitmap &= ~(1U << (OS_PRIORITY_QUEUE_NUM - priority - 1));
            }
        }
        processBitmap &= ~(1U << (OS_PRIORITY_QUEUE_NUM - processPriority - 1));
    }

OUT:
    return newTask;
}

结构体的最爱

LOS_DL_LIST是复杂结构体的最爱,以下举例ProcessCB(进程控制块)是描述一个进程的所有信息,其中用到了 8个双向链表,这简直比章鱼还牛逼,章鱼也才四双触手,但进程有8双(16只)触手.

typedef struct ProcessCB {
    //...此处省略其他变量
    LOS_DL_LIST          pendList;                     /**< Block list to which the process belongs */ //进程所属的阻塞列表,如果因拿锁失败,就由此节点挂到等锁链表上
    LOS_DL_LIST          childrenList;                 /**< my children process list */	//孩子进程都挂到这里,形成双循环链表
    LOS_DL_LIST          exitChildList;                /**< my exit children process list */	//那些要退出孩子进程挂到这里,白发人送黑发人。
    LOS_DL_LIST          siblingList;                  /**< linkage in my parent's children list */ //兄弟进程链表, 56个民族是一家,来自同一个父进程.
    LOS_DL_LIST          subordinateGroupList;         /**< linkage in my group list */ //进程是组长时,有哪些组员进程
    LOS_DL_LIST          threadSiblingList;            /**< List of threads under this process *///进程的线程(任务)列表
    LOS_DL_LIST          threadPriQueueList[OS_PRIORITY_QUEUE_NUM]; /**< The process's thread group schedules thepriority hash table */	//进程的线程组调度优先级哈希表
    LOS_DL_LIST          waitList;     /**< The process holds the waitLits to support wait/waitpid *///进程持有等待链表以支持wait/waitpid
} LosProcessCB;

解读

pendList个人认为它是鸿蒙内核功能最多的一个链表,它远不止字面意思阻塞链表这么简单,只有深入解读源码后才能体会它真的是太会来事了,一般把它理解为阻塞链表就行.上面挂的是处于阻塞状态的进程.

childrenList孩子链表,所有由它fork出来的进程都挂到这个链表上.上面的孩子进程在死亡前会将自己从上面摘出去,转而挂到exitChildList链表上.

exitChildList退出孩子链表,进入死亡程序的进程要挂到这个链表上,一个进程的死亡是件挺麻烦的事,进程池的数量有限,需要及时回收进程资源,但家族管理关系复杂,要去很多地方消除痕迹.尤其还有其他进程在看你笑话,等你死亡(wait/waitpid)了通知它们一声.

siblingList兄弟链表,和你同一个父亲的进程都挂到了这个链表上.

subordinateGroupList朋友圈链表,里面是因为兴趣爱好(进程组)而挂在一起的进程,它们可以不是一个父亲,不是一个祖父,但一定是同一个老祖宗(用户态和内核态根进程).

threadSiblingList线程链表,上面挂的是进程ID都是这个进程的线程(任务),进程和线程的关系是1:N的关系,一个线程只能属于一个进程.这里要注意任务在其生命周期中是不能改所属进程的.

threadPriQueueList线程的调度队列数组,一共32个,任务和进程一样有32个优先级,调度算法的过程是先找到优先级最高的进程,在从该进程的任务队列里去最高的优先级任务运行.

waitList是等待子进程消亡的任务链表,注意上面挂的是任务.任务是通过系统调用

  pid_t wait(int *status);
  pid_t waitpid(pid_t pid, int *status, int options);
将任务挂到waitList上.鸿蒙waitpid系统调用为SysWait,具体看进程回收篇.

双向链表是内核最重要的结构体,精读内核的路上它会反复的映入你的眼帘,理解它是理解内核运作的关键所在!

编辑:hfy

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 内核
    +关注

    关注

    3

    文章

    1422

    浏览量

    41654
  • 鸿蒙系统
    +关注

    关注

    183

    文章

    2642

    浏览量

    68400
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    开源鸿蒙主题演讲分论坛顺利召开

    深入探讨,不仅集中展示开源鸿蒙生态力量,更重在深度解析开源鸿蒙在技术创新与产业落地等方面的典型案例与创新实践,共同探索万物智联的无限潜能。
    的头像 发表于 07-28 17:15 ?469次阅读

    RK3128 Android 7.1 进入深度休眠流程分析

    程 suspend_ops结构中的RK3128特定操作被调用 执行以下关键步骤: 保存CPU上下文 关闭非必要外设时钟 配置DDR进入自刷新模式 配置PMIC降低电压 最后关闭CPU时钟 3. RK3128
    发表于 07-22 10:45

    开源鸿蒙操作系统教育版SmartEOS深度解析

    转型的前沿实践,包括“开源鸿蒙赋能智慧教育全场景”与“基于SmartEOS 鸿蒙智联教室解决方案”两大创新成果。迎来教育部及直属单位领导实地参观考察并给予高度评价。
    的头像 发表于 06-17 10:36 ?735次阅读

    鸿蒙5开发宝藏案例分享---Web加载时延优化解析

    鸿蒙开发宝藏:Web加载完成时延优化实战 大家好呀!今天在翻鸿蒙开发者文档时,发现了一个隐藏的 性能优化宝藏区 ——官方竟然悄悄提供了超多实战案例!尤其是****Web加载完成时延分析这块,简直是
    发表于 06-12 17:11

    鸿蒙5开发宝藏案例分享---性能优化案例解析

    鸿蒙性能优化宝藏指南:实战工具与代码案例解析 大家好呀!今天在翻鸿蒙开发者文档时,意外挖到一个 性能优化宝藏库 ——原来官方早就提供了超多实用工具和案例,但很多小伙伴可能没发现!这篇就带大家手把手
    发表于 06-12 16:36

    鸿蒙NEXT上传图片功能PhotoViewPicker核心功能解析

    # 鸿蒙NEXT上传图片功能PhotoViewPicker核心功能解析 #ArkTS#鸿蒙Next#HarmonyOS_SDK应用服务#HarmonyOS 语言 `PhotoViewPicker
    发表于 06-06 15:00

    渗压计在混凝土结构中的安装指南

    在现代土木工程和岩土工程中,渗压计是监测混凝土结构体内孔隙水压力变化的重要工具。南京峟思公司生产的渗压计因其高精度和可靠性而被广泛应用于各种工程监测项目中。一、渗压计在混凝土结构中的
    的头像 发表于 05-28 10:55 ?212次阅读
    渗压计在混凝土<b class='flag-5'>结构</b><b class='flag-5'>体</b>中的安装指南

    工业触摸一机品牌厂家聚徽分享——电容 / 电阻触控技术深度解析与抗干扰解决方案

    控的准确性和稳定性。深入了解这两种触控技术,并掌握相应的抗干扰解决方案,对保障工业触摸一机高效运行至关重要。 一、电容触控技术深度解析 (一)工作原理 电容触控技术基于人体电场感应原
    的头像 发表于 05-21 13:37 ?245次阅读

    国产操作系统加速崛起——鸿蒙电脑补齐鸿蒙生态最重要拼图

    国产操作系统加速崛起——鸿蒙电脑补齐鸿蒙生态最重要拼图 5月19日,首次应用鸿蒙操作系统的个人电脑(PC)在四川成都正式发布。这标志着我国拥有了完全自主可控的电脑操作系统,国产操作系统
    的头像 发表于 05-21 11:41 ?262次阅读

    Nginx核心功能深度解析

    Nginx核心功能深度解析
    的头像 发表于 05-09 10:50 ?362次阅读

    C语言中结构与联合体的深度解析:内存布局与应用场景

    int value; // 4字节 }; // 写入arr[0]=\'A\'后,value的二进制表示为0x41 三、实战代码深度剖析 3.1 结构应用场景 typedef struct
    发表于 04-08 09:18

    国产自研新标杆:龙芯GM9-3003主板深度解析

    国产自研新标杆:龙芯GM9-3003主板深度解析
    的头像 发表于 03-04 13:55 ?528次阅读

    Linux系统中最重要的三个命令

    Linux三剑客是Linux系统中最重要的三个命令,它们以其强大的功能和广泛的应用场景而闻名。这三个工具的组合使用几乎可以完美应对Shell中的数据分析场景,因此被统称为Linux三剑客。
    的头像 发表于 03-03 10:37 ?505次阅读

    鸿蒙案例技术分享 | 基于AIoT-3568X的鸿蒙通行一机方案项目

    案例展示视美泰鸿蒙通行一机方案以鸿蒙版AIoT-3568X人工智能主板为核心平台,搭载OpenHarmony操作系统,使用自研算法和国产芯片,可管可控,并提供身份识别以及其他外设配件生态链支持
    的头像 发表于 12-13 16:25 ?1173次阅读
    <b class='flag-5'>鸿蒙</b>案例技术分享 | 基于AIoT-3568X的<b class='flag-5'>鸿蒙</b>通行一<b class='flag-5'>体</b>机方案项目

    结构成员的顺序会影响结构的大小吗

    相同的结构成员,如果把顺序调整一下,会不会影响结构的大小? 答案是会的,这主要跟字节对齐有关。 比如这样的结构
    的头像 发表于 11-25 16:24 ?618次阅读