0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

神经网络为何无法实现人类的推理并产生意识?

倩倩 ? 来源:知识就是力量 ? 2020-04-17 15:16 ? 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

前不久,据华尔街日报报道, Uber在一宗无人车的测试过程中,造成了一名行人死亡的严重交通事故,除此之外,环顾我们身边,苹果手机的虚拟个人助理Siri有时会无法识别我们在说什么;某些人脸识别支付应用也存在着一些安全问题。这些事件反映出来的一个情况是,目前的AI似乎并没有足够的智能,甚至并无法很好地处理从外界获取的信息。

人脑中的神经网络是一个非常复杂的组织,成人的大脑中约有1000亿个神经元,人类至今仍在探索人脑的工作原理。而人们通过对生物神经元的研究和理解,构建了一个模拟人脑的计算模型:人工神经网络!

那么,人工神经网络是什么?人类通过构造神经网络,能否给AI赋能,使之自我进化?

什么是神经网络?

简单来说,神经网络是一种模拟人脑的计算架构;利用神经网络进行机器学习,则让计算机不再只是执行命令的机器,而是具有了一定程度上分析判断的能力。当然,这个能力也离不开海量的数据和高超的计算能力。

一个经典的神经网络一般包含三个层次:输入层、隐藏层和输出层。而这三个层分别模仿的是神经元的树突、轴突和轴突末梢。输入层接收外部的输入数据,比如图片、文本、语音等,通过,隐层抽象数据的通用模式,进而通过输出层输出模型的计算的结果。

历史上,科学家还设计过多层的神经网络,每一层都会对前一层传来的结果进行再次加工,目的是模拟出一种“深思熟虑”的感觉,但最后发现结果准确度并没有提高,有的时候还会陷入误区,就像人容易朝着一个思路越陷越深,最后钻牛角尖了一样。随着技术进步,让这一问题得到改善。现在,最厉害的神经网络技术不但已经非常接近人脑,还排除了很多人脑自身存在的低效的思维方式。

柯洁在与AlphaGo大战后,在接受腾讯体育记者的采访时表示,“我也不敢想象,它居然可以把棋下得那么强硬,撑得那么满,好像好多块棋扭在一起,那是人类擅长发挥的地方了。跟它下棋会发现它处理得好像比我们人类还好很多,其实那一刻是很绝望的。甚至是那些研发它的人也不知道是怎么做到这一点的,研发它的人是下不过它的,很多人甚至不懂棋,居然能创造出这么一个怪物。所以,我唯一能感受到的是它对形势的乐观和自信,而且是绝对的乐观和自信,这一点人类是没有的。再自信也不会像它那么自信,无论你验证多少次,它都是不可战胜的。”

神经网络为何无法实现人类的推理并产生意识?

机器人是否具有意识”一直是人们所争论的焦点之一,而在这其中,人工神经网络的技术发展起着重要的作用。对当前的人工神经网络而言,解决某些特定场景的问题,特别具有优势,但解决人们习以为常的问题却非常困难。比如,MIT媒体实验室研究员joy buolamwini研究文章称,人脸识别技术针对不同种族的准确率差异巨大,其中针对黑人女性的错误率高达35%!

中国工程院院士郑南宁指出,人工智能研究的一个重要方向,是借鉴认知科学、计算神经科学的研究成果,使计算机通过直觉推理和经验学习,将自身引导到更高的层次。然而,人脑对真实世界的理解、非完整信息的处理、复杂时空的任务处理能力是当前机器学习无法比拟的,还有人的大脑神经网络结构的可塑性,以及人脑在非认知因素和认知功能之间的相互作用,都是很难以形式化、公式化的描述。

神经网络是怎么应用到各领域的?

神经网络虽然缺乏人类解决问题的强大理解能力,但却可以通过海量的计算从大量的数据中找到一些通用的模式。因此它们作为辅助工具,已经在各行各业,尤其是在多媒体领域体现了自身的价值。

手写数字识别应该是神经网络最早的商业应用之一。大部分的人都可以轻松识别下图中的手写数字,但要设计一套计算机程序来识别这些数字,就会发现视觉模式识别的难度。而神经网络的思想是,利用大量的手写数字,即训练样本,从中自动学习到识别各个数字的规则。而且随着样本数量的增加,神经网络可以学习到更多信息,从而可以进一步提升准确度。目前最好的商用神经网络已经足够好到能被银行用来处理支票,以及被邮局用来识别地址。

MNIST手写数字数据集一览

手写数字或许有些过于简单,那么使用神经网络发现地外行星,就更能显示它的能力了。谷歌和得克萨斯大学奥斯丁分校合作,利用上万颗被标记的恒星数据,训练了一个卷积神经网络,训练结果显示,神经网络判别行星的准确率高达96%。然后,研究人员让这个神经网络处理2009年到2013年观测到的670颗恒星的数据集,通过微小的特征变化,发现了两个星系存在地外行星的可能性非常高。经过研究人员的验证,确认了这两颗新的行星。

神经网络发现的开普勒-90星系与太阳系的对比

近日,美国FDA首次批准了用于检测糖尿病视网膜病变的人工智能产品:IDx-DR。这次FDA评估了来自10个初级卫生保健点的900名糖尿病患者的视网膜临床研究图像数据,IDx-DR能够正确识别轻度以上糖尿病性视网膜病变的准确率为87.4%,而正确识别没有轻度以上的糖尿病性视网膜病变的准确率为89.5%。

在目前比较火热的无人车领域,虽然各大厂商还在研究测试通用的解决方案,但在一些具体的案例上已经有了一些成果。图森未来使用自主研发的深度学习感知算法,能够做到让摄像头像人眼一样实时感知行车周边环境,检测和跟踪视野中的各种物体,能够对可视场景进行像素级的解读。凭借视觉高精度定位和多传感器融合技术,能够实现高速公路上的无人驾驶,帮助货运企业降低成本,加快货运周转。

总之,神经网络在不断地影响着生活、医疗和出行,但科研界对它有更多理性的看法。伯克利大学机器学习专家Michael I. Jordan认为,计算机科学仍然是最首要的学科,人工智能还无法取而代之,而神经网络只是该领域中仍在发展中的一个部份。

“现在要问神经网络会把我们带多远还为时尚早。”最看好神经网络发展前景的专家题讨论成员——OpenAI共同创办人兼研究总监Ilya Sutskever表示,“这些模型很难理解。例如,将机器视觉作为一种程序真的很不可思议,但现在我们对不可思议的问题都能提出不可思议的解决方案了。”

无论如何,我们目前正处理人工智能对社会的变革过程中,它们已经从实验室过渡到了商业部署。无疑,广泛的工业领域将受到庞大的数据和数据分析功能的深远影响。尽管神经网络还无法实现基本的人类推理和理解力,但它们将是建构人工智能漫漫长路上所用到的重要工具之一。

虽然现在神经网络还无法产生意识,但随着信息科学、认知科学、神经生物学、心理学等前沿学科和交叉学科的深度融合与不断发展,人工智能将会迎来新的发展高潮。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4814

    浏览量

    104488
  • 神经元
    +关注

    关注

    1

    文章

    368

    浏览量

    18915
  • 机器学习
    +关注

    关注

    66

    文章

    8513

    浏览量

    135107
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    无刷电机小波神经网络转子位置检测方法的研究

    摘要:论文通过对无刷电机数学模型的推导,得出转角:与三相相电压之间存在映射关系,因此构建了一个以三相相电压为输人,转角为输出的小波神经网络实现转角预测,采用改进遗传算法来训练网络
    发表于 06-25 13:06

    神经网络压缩框架 (NNCF) 中的过滤器修剪统计数据怎么查看?

    无法观察神经网络压缩框架 (NNCF) 中的过滤器修剪统计数据
    发表于 03-06 07:10

    BP神经网络与卷积神经网络的比较

    BP神经网络与卷积神经网络在多个方面存在显著差异,以下是对两者的比较: 一、结构特点 BP神经网络 : BP神经网络是一种多层的前馈神经网络
    的头像 发表于 02-12 15:53 ?828次阅读

    BP神经网络实现步骤详解

    BP神经网络实现步骤主要包括以下几个阶段:网络初始化、前向传播、误差计算、反向传播和权重更新。以下是对这些步骤的详细解释: 一、网络初始化 确定
    的头像 发表于 02-12 15:50 ?755次阅读

    BP神经网络的优缺点分析

    自学习能力 : BP神经网络能够通过训练数据自动调整网络参数,实现对输入数据的分类、回归等任务,无需人工进行复杂的特征工程。 泛化能力强 : BP神经网络通过训练数据学习到的特征表示
    的头像 发表于 02-12 15:36 ?1053次阅读

    BP神经网络与深度学习的关系

    BP神经网络与深度学习之间存在着密切的关系,以下是对它们之间关系的介绍: 一、BP神经网络的基本概念 BP神经网络,即反向传播神经网络(Backpropagation Neural N
    的头像 发表于 02-12 15:15 ?992次阅读

    深度学习入门:简单神经网络的构建与实现

    深度学习中,神经网络是核心模型。今天我们用 Python 和 NumPy 构建一个简单的神经网络神经网络由多个神经元组成,神经元之间通过
    的头像 发表于 01-23 13:52 ?604次阅读

    人工神经网络的原理和多种神经网络架构方法

    在上一篇文章中,我们介绍了传统机器学习的基础知识和多种算法。在本文中,我们会介绍人工神经网络的原理和多种神经网络架构方法,供各位老师选择。 01 人工神经网络 ? 人工神经网络模型之所
    的头像 发表于 01-09 10:24 ?1413次阅读
    人工<b class='flag-5'>神经网络</b>的原理和多种<b class='flag-5'>神经网络</b>架构方法

    基于光学衍射神经网络的轨道角动量复用全息技术的设计与实验研究

    随着神经网络的发展,光学神经网络(ONN)的研究受到广泛关注。研究人员从衍射光学、散射光、光干涉以及光学傅里叶变换等基础理论出发,利用各种光学设备及材料成功实现神经网络的光学线性运算
    的头像 发表于 12-07 17:39 ?2886次阅读
    基于光学衍射<b class='flag-5'>神经网络</b>的轨道角动量复用全息技术的设计与实验研究

    卷积神经网络实现工具与框架

    卷积神经网络因其在图像和视频处理任务中的卓越性能而广受欢迎。随着深度学习技术的快速发展,多种实现工具和框架应运而生,为研究人员和开发者提供了强大的支持。 TensorFlow 概述
    的头像 发表于 11-15 15:20 ?780次阅读

    卷积神经网络与传统神经网络的比较

    在深度学习领域,神经网络模型被广泛应用于各种任务,如图像识别、自然语言处理和游戏智能等。其中,卷积神经网络(CNNs)和传统神经网络是两种常见的模型。 1. 结构差异 1.1 传统神经网络
    的头像 发表于 11-15 14:53 ?2045次阅读

    RNN模型与传统神经网络的区别

    神经网络是机器学习领域中的一种强大工具,它们能够模拟人脑处理信息的方式。随着技术的发展,神经网络的类型也在不断增加,其中循环神经网络(RNN)和传统神经网络(如前馈
    的头像 发表于 11-15 09:42 ?1276次阅读

    LSTM神经网络的基本原理 如何实现LSTM神经网络

    LSTM(长短期记忆)神经网络是一种特殊的循环神经网络(RNN),它能够学习长期依赖信息。在处理序列数据时,如时间序列分析、自然语言处理等,LSTM因其能够有效地捕捉时间序列中的长期依赖关系而受到
    的头像 发表于 11-13 09:53 ?1829次阅读

    关于卷积神经网络,这些概念你厘清了么~

    随着人工智能(AI)技术的快速发展,AI可以越来越多地支持以前无法实现或者难以实现的应用。本文基于此解释了 卷积神经网络 (CNN)及其对人工智能和机器学习的意义。CNN是一种能够从
    发表于 10-24 13:56

    matlab 神经网络 数学建模数值分析

    matlab神经网络 数学建模数值分析 精通的可以讨论下
    发表于 09-18 15:14