0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

检测AI中的常见认知偏差

汽车玩家 ? 来源:今日头条 ? 作者:闻数起舞 ? 2020-05-03 18:23 ? 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

在过去的几年中,随着AI解决方案在我们的日常生活中越来越根深蒂固,人工智能(AI)的偏见已成为热门话题。 作为转向数据科学的心理学家,这个话题非常贴切。

为了避免使AI模型产生偏差,首先必须意识到存在各种各样的偏差。

为了检测偏见,必须意识到它的存在。

为此,本文将指导您解决在开发AI的不同阶段中可能遇到的许多常见和不常见的偏见。 这些阶段包括:

· 数据采集

· 数据预处理

· 数据分析

· 建模

希望,了解您可能遇到的偏见将有助于您开发偏见较少的AI解决方案。

1.什么是偏见?

偏见被认为是对一个想法或事物的偏爱或偏见。 偏见通常是在人类的背景下想到的,但它可以存在于许多不同的领域:

· 统计信息-例如,统计信息的系统失真

· 研究-例如,偏向于发表某些实验性重大成果

· 社会科学-例如,对某些人群的偏见

在本文中,我们将结合几个领域,在这些领域中可能会出现(认知)偏差,以了解偏差如何进入人工智能。

在下文中,我将经历AI开发的常见阶段,并确定步骤以检测可能在哪里发现偏差。

2.数据收集

数据收集是您会发现偏见的第一个也是最常见的地方之一。 造成这种情况的最大原因是,数据通常是由人收集或创建的,从而允许错误,离群值和偏差易于渗入数据中。

数据收集过程中常见的偏见:

· 选择偏差-选择数据时样本不能代表总体的数据选择

例如,在许多社会研究中,研究人员一直在使用学生作为参与者,以检验其假设。 学生显然不能代表一般人群,并且可能会偏向所发现的结果。

Selection Bias

· 框架效应-调查以特定倾向构建的问题。

如下图所示,如果这个问题的答案是肯定的,那么人们更有可能挽救200条生命,而挽救所有人的几率是33%。

检测AI中的常见认知偏差

当出现正构架提示(“挽救200条生命”)时,有72%的参与者选择了治疗A,而当出现负构架提示(“ 400人将死亡”)时,则下降为22%。

· 系统性偏差-这是一个一致且可重复的错误。

这通常是设备故障的结果。 由于此错误很难检测,因此更正此错误很重要。 必须对机械或过程有充分的了解。

检测AI中的常见认知偏差

Systematic Error

· 回应偏见—一系列偏见,参与者对问题的回答不正确或错误。

答复偏见经常出现在问卷中。 由于这些都是参与者填写的,因此人为偏见很容易在数据中找到。 例如,《社会可取性偏见》指出人们很可能否认其反应中的不良特征。 这可以通过强调良好行为或低估不良行为来实现。 类似地,"问题顺序偏向"指出人们可能会根据问题的顺序不同地回答问题。

重要的是要了解,您如何设计收集过程会严重影响将要收集的数据类型。 如果不小心,您的数据将严重偏向某些群体。 任何结果分析都可能有缺陷!

3.数据预处理

检测AI中的常见认知偏差

处理数据时,可以采取许多步骤来准备进行分析:

· 离群值检测

您通常希望删除异常值,因为它们可能对某些分析产生不成比例的影响。 在所有人都在20到30岁之间的数据集中,一个110岁的人可能不太能代表数据。

· 缺失值

您如何处理某些变量的缺失值会引入偏差。 如果要用均值填充所有缺失值,那么您有意将数据推向均值。 这可能会使您偏向表现更接近均值的某些群体。

· 筛选资料

我已经多次看到这种情况,对数据进行了如此多的过滤,以致于它几乎不再代表目标人群。 这以某种方式将选择偏差引入数据。

4.数据分析

在开发AI解决方案时,最终产品可能是模型或算法。 但是,在数据分析中也很容易发现偏差。 通常,我们会在数据分析中看到以下偏见:

· 误导图-扭曲的图,它歪曲了数据,因此可能从中得出不正确的结论。

例如,当报告分析结果时,数据科学家可以选择将其图的y轴从0开始。尽管这不会在数据本身中引入偏差,但由于差异似乎是 更明显(见下图)。

检测AI中的常见认知偏差

如果Y轴从0%开始,则农作物产量的差异似乎很小。但是,简单地将其更改为从70%开始会产生看似不同的观点,而结果实际上是相同的。

如果您想进一步了解误导图的影响,强烈建议您阅读"如何利用统计数据撒谎"一书!

· 确认偏见—倾向于专注于确认先入之见的信息的倾向。

假设您认为癌症和喝酒之间有很强的关系。 在执行分析时,您仅通过不考虑任何混淆变量来搜索以确认该假设。

检测AI中的常见认知偏差

The confirmation Bias

这似乎是一个极端的例子,您将永远做不到。 但是现实是,人类天生就有偏见,这很难撼动。 发生在我身上的次数比我想承认的要多!

5.建模

检测AI中的常见认知偏差

当谈论AI的偏见时,人们通常指的是某种程度上有利于特定人群的AI系统。 一个很好的例子就是亚马逊创建的招聘算法,该算法在决策中显示了性别偏见。 他们用于此算法的数据主要由担任技术职务的男性组成,这使其倾向于使用男性作为高潜力候选人。

这是垃圾填充现象的经典示例,其中您的AI解决方案仅与您使用的数据一样好。 这就是为什么在开始对数据进行建模之前检测数据中的偏差如此重要的原因。

让我们研究一下在创建预测模型时经常会看到的几种类型的偏差:

· 偏差/方差折衷-偏差(模型的基本假设)和方差(如果使用不同的数据,则预测的变化)之间的折衷。

具有高方差的模型将过多地关注火车数据,并且不能很好地推广。 另一方面,高偏差假定数据始终以相同的方式运行,这很少是正确的。 当增加偏见时,通常会降低方差,反之亦然。 因此,我们经常寻求平衡偏见和差异。

检测AI中的常见认知偏差

Demonstrating the effect of the trade-off between bias and variance.

· 概念漂移–一种现象,目标变量的统计属性会随时间发生意外变化。

假设您创建了一个模型,可以预测在线商店中客户的行为。 该模型起初很棒,但一年后性能下降。 发生的事情是客户的行为在过去一年中发生了变化。 客户行为的概念已经改变,并对模型的质量产生负面影响。

解决方案可能只是简单地使用新数据重新训练您的模型,以便及时掌握新行为。 但是,可能需要一个全新的模型。

检测AI中的常见认知偏差

The original data (left) versus concept drift (right) after time has passed and new data was added.

· 分类不平衡-(目标)分类频率的极端不平衡。

假设您要对图片包含猫还是狗进行分类。 如果您有1000张狗的照片而只有10张猫的照片,则存在类不平衡。

阶级失衡的结果是该模型可能偏向多数阶级。 由于数据中的大多数图片都是狗,因此该模型只需要始终猜测"狗"即可达到99%的准确率。 实际上,该模型尚未了解到猫和狗的图片之间的差异。 可以通过选择正确的验证措施(例如,平衡准确度或F1得分而不是准确度)来补救。

6.接下来是什么?

在了解了AI解决方案中的所有这些潜在偏见之后,您可能会认为:

"但是我该如何消除解决方案中的偏见?"

我认为,要解决偏见,您需要了解其根源。 知道是成功的一半。 之后,由您自己确定消除或处理该特定偏差的方法。 例如,如果您发现问题是由于数据中的选择偏差引起的,那么最好添加其他数据。 如果类别不平衡使您的模型更偏向多数群体,那么您可以研究重采样策略(例如SMOTE)。

注意:有关常见认知偏差的交互式概述,请参见此惊人的可视化。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • AI
    AI
    +关注

    关注

    88

    文章

    35760

    浏览量

    282483
  • 人工智能
    +关注

    关注

    1810

    文章

    49221

    浏览量

    251559
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    从 “认知优势” 到现实赋能:DPVR AI Glasses 重构智能穿戴价值

    近日,扎克伯格提出了一个惊人的全新观点:没有使用AI眼镜的人将在未来处于“认知劣势”。 在Meta的Q2季度财报电话会议上,扎克伯格回答分析师提问时表示,他表示AI眼镜在很多方面都有用,既是一款时尚
    的头像 发表于 08-05 16:57 ?361次阅读

    单向阀气密性检测常见故障及解决办法

    单向阀气密性检测仪在工业生产中起着至关重要的作用,然而在使用过程难免会出现一些故障。了解常见故障及其解决办法,能有效提高设备的使用效率和检测准确性。一、
    的头像 发表于 06-30 14:01 ?158次阅读
    单向阀气密性<b class='flag-5'>检测</b>仪<b class='flag-5'>常见</b>故障及解决办法

    高温电阻率测试的5个常见错误及规避方法

    测试结果出现偏差。下面为你详细剖析高温电阻率测试的 5 个常见错误,并提供有效的规避方法。? 一、样品制备不当? 常见错误? 样品的形状、尺寸和表面状态对高温电阻率测试结果影响显著。
    的头像 发表于 06-09 13:07 ?270次阅读
    高温电阻率测试<b class='flag-5'>中</b>的5个<b class='flag-5'>常见</b>错误及规避方法

    生成式AI如何重塑设计思维与品牌创新?从工具到认知革命的跃迁

    ?作为深度参与AI与设计融合实践的观察者,我逐渐意识到这场变革的本质不是简单的"人机协作",而是一场认知范式的迁移——就像文艺复兴时期透视法的发明永久改变了人类观察世界的方式,GAI正在重新定义"创造力"的疆域。 一、设计民主化背后的
    的头像 发表于 05-30 15:55 ?254次阅读

    避免踩坑!汽车配件气密检测设备的常见误区与解决方案

    汽车配件气密性检测主要是把控质量和安全重点,如何避免因测试方法或环境控制不当导致检测结果偏差
    的头像 发表于 05-22 15:09 ?228次阅读
    避免踩坑!汽车配件气密<b class='flag-5'>检测</b>设备的<b class='flag-5'>常见</b>误区与解决方案

    解决手表后壳气密性检测常见问题的实用技巧

    在手表生产与质检过程,手表后壳气密性检测仪起着至关重要的作用。然而,在实际使用,不少用户会遇到一些常见问题。以下是一些实用的解决技巧,助您轻松应对。一、
    的头像 发表于 05-22 11:21 ?221次阅读
    解决手表后壳气密性<b class='flag-5'>检测</b>仪<b class='flag-5'>常见</b>问题的实用技巧

    AI智能质检系统 工业AI视觉检测

    AI质检系统通过结合机器学习、深度学习、计算机视觉等先进技术,能够比较准确的、地完成产品质量检测任务。本文将从多个角度详细探讨AI质检系统的优点,并分析其在实际应用的价值。一、高精
    的头像 发表于 02-26 17:36 ?673次阅读
    <b class='flag-5'>AI</b>智能质检系统 工业<b class='flag-5'>AI</b>视觉<b class='flag-5'>检测</b>

    晶振的频率偏差与解决方法

    晶振是一种常用的频率标准元件,在电子电路具有重要的作用。然而,在实际使用,晶振的频率并不是完全准确的,常常会存在一定的偏差。这种偏差是由多种因素造成的,包括温度变化、电压变化、机械
    的头像 发表于 02-21 14:53 ?711次阅读
    晶振的频率<b class='flag-5'>偏差</b>与解决方法

    电源检测设备如何解决常见问题?

    电源检测设备是用于确保电气系统和设备正常运行的重要工具。它们可以帮助识别和解决各种与电源相关的问题,包括电压不稳、电流过大、接地问题等。以下是一些常见的电源问题以及电源检测设备如何解决这些
    发表于 01-02 16:10

    常见晶振故障及解决方法 晶振在物联网的应用

    常见晶振故障及解决方法 晶振(Crystal Oscillator)是一种利用石英晶体的压电效应来产生稳定振荡频率的电子元件,广泛应用于各种电子设备,包括物联网(IoT)设备。晶振的稳定性和准确性
    的头像 发表于 12-09 09:34 ?2013次阅读

    电子电器气密性检测仪使用方法:操作常见错误与纠正

    电子电器气密性检测仪是确保产品质量的关键设备,但在使用过程,操作人员常犯一些错误,导致测试结果不准确或仪器损坏。以下是一些常见的操作错误及其纠正方法,旨在帮助操作人员正确使用气密性检测
    的头像 发表于 11-29 11:20 ?637次阅读
    电子电器气密性<b class='flag-5'>检测</b>仪使用方法:操作<b class='flag-5'>中</b>的<b class='flag-5'>常见</b>错误与纠正

    直播报名丨第4讲:AI检测系统落地工具详解

    阿丘工业AI学堂上线“AI检测系统开发实战”系列课程,全面涵盖AI检测系统开发从理论到实践、从算法选择到系统落地的各个关键环节,助力您快速了
    的头像 发表于 11-23 01:05 ?450次阅读
    直播报名丨第4讲:<b class='flag-5'>AI</b><b class='flag-5'>检测</b>系统落地工具详解

    直播报名丨第2讲:热门AI检测案例解析

    阿丘工业AI学堂上线“AI检测系统开发实战”系列课程,全面涵盖AI检测系统开发从理论到实践、从算法选择到系统落地的各个关键环节,助力您快速了
    的头像 发表于 11-12 01:05 ?577次阅读
    直播报名丨第2讲:热门<b class='flag-5'>AI</b><b class='flag-5'>检测</b>案例解析

    莫拉维克悖论与多模态AI:迈向机器人认知的新时代

    莫拉维克悖论揭示了人工智能系统在处理高级推理与基本感知运动技能上的巨大差异。对于AI而言,复杂的逻辑任务似乎比人类习以为常的感知运动技能更容易实现。这一悖论凸显了当前AI与人类认知能力之间的鸿沟。
    的头像 发表于 10-26 15:00 ?1346次阅读

    检测系统中常见的信号类型有哪些

    检测系统常见的信号类型多种多样,这些信号类型根据被测物理量的不同而有所区别。以下是一些常见的信号类型: 位移信号 :位移信号是检测系统
    的头像 发表于 10-15 13:57 ?1855次阅读