0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

学习关于ST推出的STM32 Cube.AI人工智能神经网络开发工具包

黄工的嵌入式技术圈 ? 来源:黄工的嵌入式技术圈 ? 作者:黄工的嵌入式技术 ? 2020-03-04 11:14 ? 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

想必有些朋友都在ST官网、或其它地方看到这条ST推出AI神经网络开发工具包的新闻了。

1ST主页消息

不知道大家有没有关注ST的一些新闻,反正我经常浏览它的网站,在ST主页出了这么一个消息:

TMicroelectronics Drives AI to Edge and Node Embedded Devices with STM32 Neural-Network Developer Toolbox

大概意思是:ST利用STM32神经网络开发工具包将AI(Artificial Intelligence人工智能)驱动到边缘和节点嵌入式设备。

大家可以进入网页了解相关信息:

https://www.st.com/content/st_com/en/about/media-center/press-item.html/p4116.html

2

STM32Cube.AI

ST在STM32CubeMX工具中引入STM32Cube.AI工具包,大家可以在STM32CubeMX(V5.0.1或更高版本)工具中在线更新:

通过STM32Cube.AI,开发人员现在可以将预先训练的神经网络转换为C代码,该代码可以调用在STM32 MCU上运行的优化库中的函数。

ST的新型神经网络开发工具包STM32Cube.AI,正在将AI引入微控制器供电的智能设备,位于节点边缘,以及物联网,智能建筑,工业和医疗应用中的深度嵌入式设备。

主要特点:

从预先训练的神经网络模型生成STM32优化的库。

支持各种深度学习框架,如Keras,Caffe,ConvnetJS和Lasagne.

通过STM32Cube集成,可轻松实现不同STM32微控制器系列的便携性。

免费,用户友好的许可条款。

3

AI神经网络解决方案

使用STM32Cube.AI简化了人工神经网络映射

可与流行的深度学习培训工具互操作

兼容许多IDE和编译器

传感器RTOS无关

允许多个人工神经网络在单个STM32 MCU上运行

完全支持超低功耗STM32 MCU

提高您的工作效率

利用Deep Learning的强大功能提高信号处理性能并提高STM32应用程序的生产率。创建人工神经网络并将其映射到STM32(自动生成的优化代码),而不是构建手工制作的代码。

使用STM32CUBE.AI部署神经网络的5个步骤

1.捕获数据

2.清理,标记数据和构建ANN(人工神经网络)拓扑

3.训练ANN模型

4.将ANN转换为STM32 MCU的优化代码

5.使用经过培训的ANN处理和分析新数据

相关资源:

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4814

    浏览量

    104477
  • ST
    ST
    +关注

    关注

    32

    文章

    1181

    浏览量

    130709
  • STM32
    +关注

    关注

    2296

    文章

    11038

    浏览量

    366699
  • AI
    AI
    +关注

    关注

    88

    文章

    35760

    浏览量

    282482
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    Nordic收购 Neuton.AI 关于产品技术的分析

    Nordic Semiconductor 于 2025 年收购了 Neuton.AI,这是一家专注于超小型机器学习(TinyML)解决方案的公司。 Neuton 开发了一种独特的神经网络
    发表于 06-28 14:18

    开售RK3576 高性能人工智能主板

    AI 神经网络处理器 NPU,运算性能高达 6.0TOPS,支持多种 AI 开发工具和接口。支持 双屏异显功能,支持 LVDS 接口 1080P 输出,eDP 和 MiPi 显示接口
    发表于 04-23 10:55

    云计算开发工具包的功能

    随着云计算技术的不断成熟,越来越多的企业开始将应用和服务迁移到云端,以享受弹性计算资源、高可用性和成本效益等优势。为了加速这一进程,云计算服务提供商推出了各种开发工具包。下面,AI部落小编带您了解云计算
    的头像 发表于 02-21 11:02 ?336次阅读

    BP神经网络与深度学习的关系

    BP神经网络与深度学习之间存在着密切的关系,以下是对它们之间关系的介绍: 一、BP神经网络的基本概念 BP神经网络,即反向传播神经网络(Ba
    的头像 发表于 02-12 15:15 ?989次阅读

    人工神经网络的原理和多种神经网络架构方法

    在上一篇文章中,我们介绍了传统机器学习的基础知识和多种算法。在本文中,我们会介绍人工神经网络的原理和多种神经网络架构方法,供各位老师选择。 01
    的头像 发表于 01-09 10:24 ?1405次阅读
    <b class='flag-5'>人工</b><b class='flag-5'>神经网络</b>的原理和多种<b class='flag-5'>神经网络</b>架构方法

    最新Simplicity SDK软件开发工具包发布

    最新的SimplicitySDK软件开发工具包已经发布!此次更新针对SiliconLabs(芯科科技)第二代无线开发平台带来了包括蓝牙6.0的信道探测(Channel Sounding
    的头像 发表于 12-24 09:47 ?1010次阅读

    卷积神经网络的实现工具与框架

    卷积神经网络因其在图像和视频处理任务中的卓越性能而广受欢迎。随着深度学习技术的快速发展,多种实现工具和框架应运而生,为研究人员和开发者提供了强大的支持。 TensorFlow 概述
    的头像 发表于 11-15 15:20 ?780次阅读

    嵌入式和人工智能究竟是什么关系?

    人工智能的结合,无疑是科技发展中的一场革命。在人工智能硬件加速中,嵌入式系统以其独特的优势和重要性,发挥着不可或缺的作用。通过深度学习神经网络等算法,嵌入式系统能够高效地处理大量数
    发表于 11-14 16:39

    Moku人工神经网络101

    不熟悉神经网络的基础知识,或者想了解神经网络如何优化加速实验研究,请继续阅读,探索基于深度学习的现代智能化实验的广阔应用前景。什么是神经网络
    的头像 发表于 11-01 08:06 ?730次阅读
    Moku<b class='flag-5'>人工</b><b class='flag-5'>神经网络</b>101

    关于卷积神经网络,这些概念你厘清了么~

    随着人工智能(AI)技术的快速发展,AI可以越来越多地支持以前无法实现或者难以实现的应用。本文基于此解释了 卷积神经网络 (CNN)及其对人工智能
    发表于 10-24 13:56

    AI for Science:人工智能驱动科学创新》第4章-AI与生命科学读后感

    很幸运社区给我一个阅读此书的机会,感谢平台。 《AI for Science:人工智能驱动科学创新》第4章关于AI与生命科学的部分,为我们揭示了人工
    发表于 10-14 09:21

    AI for Science:人工智能驱动科学创新》第二章AI for Science的技术支撑学习心得

    人工智能在科学研究中的核心技术,包括机器学习、深度学习神经网络等。这些技术构成了AI for Science的基石,使得
    发表于 10-14 09:16

    AI for Science:人工智能驱动科学创新》第一章人工智能驱动的科学创新学习心得

    人工智能:科学研究的加速器 第一章清晰地阐述了人工智能作为科学研究工具的强大功能。通过机器学习、深度学习等先进技术,
    发表于 10-14 09:12

    【飞凌嵌入式OK3576-C开发板体验】RKNPU图像识别测试

    )公司开发的一种神经网络处理器(Neural Processing Unit),专门用于加速神经网络计算。以下是关于RKNPU的详细介绍: 2.1、定义与功能 定义 :RKNPU是在电
    发表于 10-10 09:27

    人工智能ai4s试读申请

    目前人工智能在绘画对话等大模型领域应用广阔,ai4s也是方兴未艾。但是如何有效利用ai4s工具助力科研是个需要研究的课题,本书对ai4s基本
    发表于 09-09 15:36