0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

【精选好文】玩转OpenHarmony PID:教你打造两轮平衡车

电子发烧友论坛 ? 来源:未知 ? 2022-12-27 09:10 ? 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

简介

此次为大家带来的是OpenAtom OpenHarmony(以下简称“OpenHarmony”)系统与PID控制算法相结合并落地的平衡车项目。 PID控制算法是一种经典的,并被广泛应用在控制领域的算法。类似于这种:需要将某一个物理量保持稳定的场合,比如维持平衡,稳定温度、转速等,PID都会适用。在四轴飞行器,平衡小车、汽车定速巡航、温度控制器等场景均有应用。 08b11fd4-8583-11ed-bfe3-dac502259ad0.png08ca2cea-8583-11ed-bfe3-dac502259ad0.png ?通过本样例的学习,开发者能够对OpenHarmony系统设备端开发有进一步的认识,还能够掌握PID控制算法的使用。本样例使用OpenHarmony 3.2 Beta1操作系统,硬件平台采用小熊派BearPi-HM Nano(Hi3861)开发板。 本样例效果动图: 08e982fc-8583-11ed-bfe3-dac502259ad0.gif092f6772-8583-11ed-bfe3-dac502259ad0.gif ?

硬件配置资源

  • 两轮平衡小车主要硬件资源:
  • 主控CPU:小熊派BearPi-HM Nano(Hi3861)开发板;
  • 陀螺仪:MPU6050六轴陀螺仪传感器
  • 左右轮:带有霍尔传感器的直流电机
  • 小车平台及结构件资源可以自行在相关网站获得。

原理概括

poYBAGQL6wuAI2mxAAB-3MA1l5A344.png ?小时候都玩过上图游戏吧:木杆立在手指上,尽量保持木杆直立不倒。 当木杆向前倾斜时,我们会往前行走,以用来抵消木杆的前倾;往后倾斜时,我们会往后倒退。对的!没错!你猜对了。平衡车的控制原理就是这样: 0f1c4c36-8583-11ed-bfe3-dac502259ad0.png ?

PID算法介绍

平衡车的控制离不开对PID算法的应用。那么什么是PID算法?它能解决什么问题? PID算法:就是“比例(proportional)、积分(integral)、微分(derivative)”,是一种常见的“保持稳定”控制算法。 0f394994-8583-11ed-bfe3-dac502259ad0.png0f4cb4e8-8583-11ed-bfe3-dac502259ad0.gif ?结合两轮平衡车的场景,对PID参数的认识如下:
  • P比例参数:该参数能够快速让小车达到平衡状态,但是由于控制是滞后的,以及是惯性系统,容易带来超调,即小车会出现前后摇摆的现象。所以P参数不能太大;
  • I积分参数:小车由于摩擦力或者风阻力,并且P不能太大,只靠P控制有可能达不到稳定状态,所以需要加入I积分参数,消除稳态误差;
  • D微分参数:平衡小车维持的是倾斜角度要为平衡角度,由于PI参数使小车振荡,小车会出现前后摇摆现象,加入D微分参数能够消除小车的振荡。

两步搭建样例工程

在OpenHarmony源码基础上,两步构建平衡小车代码。(OpenHarmony源码下载路径及BearPi-HM Nano(Hi3861)开发板代码烧录,请参考文章末尾相关链接) 第一步:拷贝Balance_car文件夹到源码路径下:deviceoardearpiearpi_hm_nanoapp (Balance_car文件获取路径,请参考文章末尾相关链接) 如图文件夹目录: 0f5bcabe-8583-11ed-bfe3-dac502259ad0.png ?第二步:修改BUILD.gn,在源码路径下:deviceoardearpiearpi_hm_nanoappBUILD.gn 添加编译依赖:"Balance_car:balance_car",如下图: 0f7a38f0-8583-11ed-bfe3-dac502259ad0.png ?

关键算法讲解

两轮平衡车的控制主要涉及三个PID环的串联使用,它们分别是直立环(平衡控制)、速度环(速度控制)、转向环(方向控制)。三个控制效果合成,控制轮子运行。 0f8f32be-8583-11ed-bfe3-dac502259ad0.png0f9de4da-8583-11ed-bfe3-dac502259ad0.png ?直立环控制算法:直立环控制算法是平衡小车维持平衡的主要算法。直立环采用了PD算法环节,即只有比例与微分环节。 倾斜角度大小以及角加速度大小决定了轮子的速度大小。可以理解为倾斜角度越大,控制轮子顺着倾斜的方向的速度越大;倾斜的角加速度越大,控制轮子速度也要越大。
float g_middleAngle = 1.0;//平衡角度
float g_kpBalance = -85800.0;
float g_kdBalance = -400;


static int ControlBalance(float angle, short gyro)
{
    int outpwm = 0;
    float angleBias = 0.0;
    float gyroBias = 0.0;
    float tempAngle = 0.0;
    float tempGyro = 0.0;


    tempAngle = 0 - angle;//极性控制
    tempGyro = 0 - gyro;


    angleBias = g_middleAngle - tempAngle;
    gyroBias = 0 - tempGyro;
    outpwm = (g_kpBalance / 100 * angleBias + g_kdBalance
     * gyroBias / 100);


    return outpwm;
}
速度环控制算法:速度环控制的目的是让机器以恒定速度前进或后退,该恒定速度可以为0速度,即要让平衡车静止。速度环采用了PI环控制,只有比例与积分环节。
float g_kpSpeed = 95800.0;
float g_kiSpeed = 200;


static int ControlSpeed(long int left, long int right)
{
    int outpwm = 0;
    int speedBias = 0;
    int speedBiasLowpass = 0;
    static int speed_i = 0;
    float a = 0.68;
    static int speedBiasLast = 0;


    speedBias = 0 - left - right;
    speedBiasLowpass = (1 - a) * speedBias
        + a * speedBiasLast;
    speedBiasLast = speedBiasLowpass;


    speed_i += speedBiasLowpass;
    speed_i = limit_data(speed_i, SPEED_H, SPEED_L);


    outpwm = (g_kpSpeed * speedBiasLowpass / 100 +
        gkiSpeed * speed_i / 100);


    return outpwm;
}
转向环控制算法:转向环的目的是控制小车以恒定速度转向。在本次场景为了控制小车平衡静止,所以只做了限制转向的操作。
static int ControlTurn(short gyro)
{
  int outpwm;


    outpwm = g_kpTurn * gyro;
  return outpwm;
}
以上详细代码,请参考文章末尾的相关链接(Balance_car文件获取路径)。

总结

本文呈现了两轮平衡小车的大致原理。简单介绍了一下PID算法的效果:P比例参数,能够快速让系统达到稳定值,但是P太大容易超调,带来振荡;I积分参数,消除稳态误差,让系统达到稳定值;D积分参数,能消除振荡,但是会使系统时效性变慢。开发者可以根据现场情况,合理调节PID三个参数。 本样例是OpenHarmony知识体系工作组为广大开发者分享的样例。同时知识体系工作组结合日常生活,给开发者规划了各种场景的Demo样例,如智能家居场景、影音娱乐场景、运动健康场景等;欢迎广大开发者一同参与OpenHarmony的开发,更加完善样例,相互学习,相互进步。

本文由电子发烧友社区发布,转载请注明以上来源。如需社区合作及入群交流,请添加微信EEFans0806,或者发邮箱liuyong@huaqiu.com

0fb74b82-8583-11ed-bfe3-dac502259ad0.png

热门推荐干货好文

1、?24Bit ADC高精度低功耗MCU 医疗级别设备参考设计(附上高精确算法+电路原理图)?

2、超强性能AI芯片,OpenHarmony多系统支持,可定制高性能AP(附10+开发Demo)

3、从零入门物联网OH开源平台,从简单到高阶项目,创客电子爱好者都爱用!

4、低成本ESP32方案,支持OpenHarmony系统开发(附10+项目样例Demo)

5、NO RTOS移植!32位、64线程开发板,超强实时性体验!

6、四核64位,超强CPU ,看RK3568“竞”开发板DEMO!

7、人工智能也能这么玩, 简单快速入手,还能自定义AI运算

8、业界首款!支持富设备开发,OpenHarmony开发者都选它!

9、高性能双核RISC-V,满足大多数开发,这款国产MCU工程师都爱了!


原文标题:【精选好文】玩转OpenHarmony PID:教你打造两轮平衡车

文章出处:【微信公众号:电子发烧友论坛】欢迎添加关注!文章转载请注明出处。


声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

原文标题:【精选好文】玩转OpenHarmony PID:教你打造两轮平衡车

文章出处:【微信号:gh_9b9470648b3c,微信公众号:电子发烧友论坛】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    电动两轮仪表盘2.0时代来临,开启智慧出行新潮流

    电动两轮2.0时代自2004年电动自行车企业大规模成立以来,两轮电动在技术和市场方面都取得了显著进展。随着技术的创新和市场需求的增长,两轮
    的头像 发表于 08-07 15:45 ?243次阅读
    电动<b class='flag-5'>两轮</b><b class='flag-5'>车</b>仪表盘2.0时代来临,开启智慧出行新潮流

    晶华微新欧标两轮BMS解决方案

    目前,随着市场对于轻便两轮的需求增加,锂电池在电动两轮动力系统中的普及率也进一步提升。对于电池系统的智能化、自动化控制,以及对电池系统的实时状态监测显得越来越重要。
    的头像 发表于 07-09 11:47 ?1156次阅读
    晶华微新欧标<b class='flag-5'>两轮</b><b class='flag-5'>车</b>BMS解决方案

    两轮平衡电动及其电机控制器设计

    摘要:两轮平衡电动平衡原理源自倒立摆模型,为研制两轮平衡电动
    发表于 06-09 16:15

    杰发科技亮相2025年两轮智能化技术发展大会

    此前,5月9日-10日,由中国电子商会智能电动汽车专委会、国家摩托车检验检测中心(天津)及莆田市荔城区人民政府共同主办的2025年两轮智能化技术发展大会在莆田市举行。在会议期间举行的两轮
    的头像 发表于 05-16 15:42 ?537次阅读

    武汉芯源半导体CW32L010在两轮仪表的应用介绍

    CW32L010凭借其优异的性能、丰富的外设资源和超低功耗特性,为两轮仪表盘应用提供了高性价比的解决方案。其宽电压工作范围和工业级温度特性,特别适合车辆电子应用的严苛环境。对于想采用CW32L010进行两轮
    的头像 发表于 05-13 14:07 ?375次阅读
    武汉芯源半导体CW32L010在<b class='flag-5'>两轮</b><b class='flag-5'>车</b>仪表的应用介绍

    武汉芯源半导体CW32L010在两轮仪表的应用介绍

    随着两轮电动的智能化发展,仪表盘作为人机交互的重要界面,其功能需求日益复杂。武汉芯源半导体的安全低功耗单片机CW32L010凭借其优异的性能和丰富的外设资源,成为两轮仪表盘应用的理
    发表于 05-13 14:06

    杰发科技持续赋能两轮智能化升级

    作为两轮保有量大国,当下我国两轮车行业正处在智能化变革前夜。2025慕尼黑上海电子展期间,四维图新旗下杰发科技现场召开两轮智能融合仪表芯
    的头像 发表于 04-22 15:48 ?501次阅读
    杰发科技持续赋能<b class='flag-5'>两轮</b><b class='flag-5'>车</b>智能化升级

    两轮电动智能蓝牙无钥匙开锁模组

    随着科技的进步与移动互联网的普及,传统的实体钥匙正在逐步被智能化的开锁方式取代。针对两轮电动车市场,我们推出了全新的智能蓝牙钥匙开锁解决方案,该解决方案基于最新的BLE5.4蓝牙技术,集成了高性能
    发表于 03-31 10:49

    Microchip推出电动两轮生态系统

    参考设计方案,可解决电动滑板车和电动自行车开发的关键挑战,包括能效优化、系统集成、安全性和上市时间。通过提供规级可扩展解决方案,Microchip致力于帮助制造商简化开发流程,打造功能丰富且可靠的电动两轮
    的头像 发表于 03-19 14:59 ?808次阅读

    两轮PKE无钥匙进入PKG一键启动系统设计

    两轮无钥匙进入PKE 一键启动系统PKG
    的头像 发表于 03-04 10:20 ?557次阅读
    <b class='flag-5'>两轮</b><b class='flag-5'>车</b>PKE无钥匙进入PKG一键启动系统设计

    两轮智能化研究:主机厂扎堆进入,两轮智能化持续提升

    佐思汽研发布《 2024-2025年两轮智能化及产业链研究报告 》。 本报告聚焦两轮的智能化升级,对电动两轮
    的头像 发表于 01-21 10:59 ?1737次阅读
    <b class='flag-5'>两轮</b><b class='flag-5'>车</b>智能化研究:主机厂扎堆进入,<b class='flag-5'>两轮</b><b class='flag-5'>车</b>智能化持续提升

    Qorvo助力电动两轮性能提升

    电动两轮已经成了中国人的出行神器,轻巧便捷,即停即走,接娃买菜轻松拿捏,让高油价和停车难不再是事。截至2023年底,中国电动两轮车市场拥有4.2亿辆的保有量,几乎每四人就有一辆,且市场仍未见顶。据预测,随着2023年新国标修订
    的头像 发表于 11-15 15:59 ?724次阅读

    两轮电动系统介绍与THVD8000在两轮电动车上的应用

    电子发烧友网站提供《两轮电动系统介绍与THVD8000在两轮电动车上的应用.pdf》资料免费下载
    发表于 09-27 11:12 ?1次下载
    <b class='flag-5'>两轮</b>电动<b class='flag-5'>车</b>系统介绍与THVD8000在<b class='flag-5'>两轮</b>电动车上的应用

    LTE-CAT1模组在两轮电池中的应用

    随着城市交通拥堵问题的加剧和环保意识的提升,两轮电动成为越来越多人的首选出行工具。作为其核心部件,电池的性能和安全性直接影响到两轮电动的整体使用体验。为了提升电池管理系统的智能化水
    的头像 发表于 09-14 16:56 ?2091次阅读
    LTE-CAT1模组在<b class='flag-5'>两轮</b><b class='flag-5'>车</b>电池中的应用

    常见的电动两轮BMS架构应用说明

    电子发烧友网站提供《常见的电动两轮BMS架构应用说明.pdf》资料免费下载
    发表于 09-12 09:28 ?6次下载
    常见的电动<b class='flag-5'>两轮</b><b class='flag-5'>车</b>BMS架构应用说明