0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

一种抑制枝晶和提高金属利用率的新型固-固转化电化学

清新电源 ? 来源:清新电源 ? 作者:景 ? 2022-11-02 09:20 ? 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

研究背景

因其具有成本低、容量高、环境友好等优点,金属锌电池引起了广泛关注。但是基于沉积-溶解反应的锌金属电极仍然面临着枝晶生长,以及负极利用率低的问题。几十年来,研究人员经历了艰辛的探索,但是从电极反应的根本上来说,基于传统的沉积-溶解反应机制的锌金属电池无法避免扩散限制凝聚效应(DLA)引起的枝晶生长。

在碱性或中性电解质中,由固-液(StoL)锌溶解和液-固(LtoS)锌电沉积产生的DLA仍然没有解决。如果能在金属锌电池中转换StoL和LtoS过程,可能有希望从根本上解决枝晶问题。

成果简介

鉴于此,复旦大学晁栋梁(通讯作者)等人注意到铅酸电池和镍镉电池很少遇到枝晶生长这一难题,其主要原因是铅酸电池和镍镉电池负极反应机制为微溶盐-金属的固-固转化反应。因此从商用铅酸/镍镉中找到灵感,报道了一种抑制枝晶和提高金属利用率的新型固-固转化电化学。

研究亮点

1、提出了碱式碳酸锌-金属锌的固-固转化(StoS)机制,有效地避免了由于StoL/LtoS产生的DLA效应引发的锌枝晶生长过程;

2、Ni-ZZG全电池中的金属锌负极的利用率高达91%,实现超过2000次循环的长寿命,以及270 Wh kg-1的卓越能量密度。

图文介绍

39aafe1a-5a41-11ed-a3b6-dac502259ad0.png

1 传统固-液、液-固反应与固-固转化反应示意图。(a)传统中性、弱酸性电解液锌离子液-固还原反应过程(b)碱式碳酸锌-金属锌固-固还原反应过程。

在传统液-固反应过程中,金属锌负极的氧化产物通常是可溶的,Zn2+很容易从电极表面扩散到电解液中,产生一个浓度梯度,进而导致枝晶的产生(图1a)。

通过简单的沉淀反应,设计了2ZnCO3-3Zn(OH)2@graphene(ZZG)复合电极。石墨烯不仅在化学合成过程中提供了抑制2ZnCO3-3Zn(OH)2聚集的成核点,而且在电化学充电/放电过程中作为导电缓冲网络缓解了体积变化。采用2ZnCO3-3Zn(OH)2作为负极活性材料,在K2CO3电解液中,2ZnCO3-3Zn(OH)2表现出微溶性。

充电过程中解离出的锌离子原位还原为金属锌;放电过程中金属锌解离出锌离子与电解液中碳酸根和氢氧根结合原位转化生成碱式碳酸锌沉淀(图1b)。该反应过程为固-固反应机制(StoS),有效地避免了固-液(StoL)、液-固(LtoS)反应存在的DLA效应。

39d8979e-5a41-11ed-a3b6-dac502259ad0.png


2局部溶剂化环境的分子动力学模拟。(a)模拟2 M K2CO3电解液结构,(b) 模拟 2 M ZnSO4电解液结构,(c)CO32?-O径向分布函数,(d)Zn2+-O径向分布函数。

采用分子动力学模拟和相应的电化学测试,以分析有关K2CO3电解质的溶剂化结构和离子传输(图2A)。

计算出的CO32-和OH-在2M K2CO3电解液中的扩散系数远远高于Zn2+在2M ZnSO4电解液中的扩散系数(图2B)。对分子动力学模拟结果进一步分析表明,Zn2+的第一个溶剂层位于2埃左右,配位数约为6,而对于CO32-,C─O(水)的第一个配位峰出现在约3.5埃处(图2C、D)。

CO32-的溶剂层虽然有10个水分子,但它不是刚性的。Zn2+配位的水分子的氢键会减慢Zn2+的扩散。而CO32?更加“柔软”的溶剂化层使它拥有更高的离子迁移速率,这非常有利于碱式碳酸锌-金属锌固-固转化反应的快速进行。

3a0a6c6a-5a41-11ed-a3b6-dac502259ad0.png


3 微溶盐负极电化学性能。(a)ZZG不同倍率下充放电平台,(b)5C倍率下循环稳定性,(c)ZZG和传统Zn负极非对称电池性能对比,(d)ZZG非对称电池库伦效率,(e)ZZG对称电池性能。

使用三电极测试系统研究了微溶盐负极的电化学性能。图3A显示了ZZG电极在0.5C(1C=480mA g-1)时的恒电流充放电曲线。在0.5C的电流密度下,可以看出明显的充放电平台。初始充电容量为465 mAh g-1,对应于于91.2%的初始库伦效率,2ZnCO3-3Zn(OH)2的锌利用率在不对称电池中高达95.7%。

ZZG在电流密度为1、2、5和10 C时的放电容量分别为432、386、328和281 mAh g-1,表明其具有卓越的倍率能力。ZZG在5 C下经过3500次充放电循环,保持接近100%的高库仑效率,并具有80%的容量保持率(图3B)。

采用ZZG||Zn非对称电池进一步研究了K2CO3电解质中ZZG的锌还原/氧化库仑效率。ZZG||Zn电池表现出2ZnCO3·3Zn(OH)2→5Zn(对应于传统的锌金属负极镀锌(Zn2+→Zn)和5Zn→2ZnCO3·3Zn(OH)2(对应于传统锌金属负极Zn→Zn2+中的Zn剥离)氧化平台。300次循环后容量保持在0.998 m Ah(图3C)。

然而,Cu||Zn非对称电池在KOH和ZnSO4电解液中的镀/脱锌过电位迅速增大,相应的脱锌容量急剧下降。在初始循环后,ZZG||Zn电池在K2CO3电解液中的库伦效率在10个循环内迅速增加到>99.0 %,并最终在50个循环后稳定在99.8 %(图3D)。

相比之下,传统锌金属在KOH和ZnSO4电解液中的镀锌/脱锌库伦效率在20次循环后迅速下降,这可归因于锌枝晶的形成。在1 m Ah cm-2的面积容量下,ZZG+Zn||ZZG+Zn对称电池循环700 h显示出高可逆性和稳定性,而Zn||Zn对称电池在仅60h后失效(图3E)。

3b223024-5a41-11ed-a3b6-dac502259ad0.png

4 ZZG负极在2M K2CO3电解液中循环后的形态。(a)ZZG充放电原位XRD,(b-d)ZZG还原反应后TEM图片,(e-g)再次氧化后的ZZG,(h)和(i)100次循环后ZZG电极SEM图片,(j)和(k)在KOH电解液中ZnO电极循环100次后电极表面状态

根据原位同步辐射XRD结果(图4A),2ZnCO3-3Zn(OH)2在放电过程中被还原成金属锌,而金属锌在充电过程中被氧化,形成2ZnCO3-3Zn(OH)2晶体。进一步监测了ZZG电极在2M K2CO3电解液中循环时的形态变化。在完全放电状态下,被还原的锌颗粒独立地散布在石墨烯基底上,呈现出六边形的形状(图4B至D)。

充电后,锌粒子被氧化成2ZnCO3-3Zn(OH)2,均匀地分布在石墨烯片上(图4E至G),这与原始ZZG非常相似。即使在3500次循环后,在放电状态下仍然是无晶须的多孔特征(图4H和I)。在6M KOH和饱和ZnO电解质中的锌表面在50个循环后呈现出多孔结构,并有针状树枝形结构(图4J和K)。这种差异应该归因于特殊的StoS机制,它有效地抑制了树枝状的生长。

3b74197a-5a41-11ed-a3b6-dac502259ad0.png

5 在2M K2CO3+0.1M KOH电解液中的Ni-ZZG全电池和1-Ah袋式电池的电化学性能。(a)氢氧化镍-ZZG全电池CV,(b)和(c)0.5 C以及不同倍率下全电池放电曲线,(d)5 C倍率下全电池循环性能,(e)不同体系锌负极利用率对比,(f)和(g)软包电池循环性能以及自放电性能,(h)不同电池体系各项性能对比

作为该机理的概念验证,选用氢氧化镍作为正极,2 M K2CO3+0.1 M KOH作为电解液组装了ZZG//Ni全电池。全电池的CV曲线显示,在0.5 mV s-1的扫描速率下,阳极峰和阴极峰分别位于1.90和1.69 V(图5A)。从第一个周期后的CV曲线和充放电曲线的重叠可以证明,氧化还原过程是高度可逆的。如图5B所示,该电池可以获得248 mAh g-1的良好放电容量。

此外,Ni-ZZG电池显示出极好的倍率性能,在1、2、5和10C的条件下,分别达到220、190、185和170 mAh g-1的高放电容量(图5C)。全电池2000次循环后,容量保持率80%左右(图5D)。此外,经计算,全电池的锌利用率高达91.3%,与那些报道的数值相比属于最高值(图5E)。

为了验证该装置的可行性,还在环境空气条件下制造了一个袋式Ni-ZZG电池。在0.5A的充放电电流下,该电池提供了1Ah的容量,这相当于135 Wh kg-1的高能量密度(图5F)。在充放电电流为1 A时,经过500次循环,该电池表现出90%的容量保持率。Ni-ZZG电池在静置1周后有90%的容量保持率(图5F)。

Ni-ZZG电池的实用指标,包括循环寿命、能量密度、环境友好性、安全性和经济性,与其他商业电池系统进行了对比评估(图5H)。可以得出结论,考虑到内在安全、低成本、无毒和电化学稳定性等优点,Ni-ZZG电池体系在某些场合可能是这些电池系统的一个有前途的替代品。

总结与展望

本文作者在弱碱性电解液中采用了金属微溶盐作为负极活性材料,可以有效地抑制金属枝晶生长,并显著提高利用率。新的StoS转换反应机制消除了传统的LtoS反应中由于金属离子扩散而产生的限制。受益于此,2ZnCO3-3Zn(OH)2和CuCO3-Cu(OH)2可以表现出较长的循环寿命,而不存在Zn或Cu枝晶生长。

当与镍基正极结合时,Ni-ZZG全电池表现出超过91%的高锌利用率,超过2000次循环的长寿命,以及270 Wh kg-1的卓越能量密度。这样的StoS转换电化学可能为解决金属负极的利用率和枝晶问题提供了一条新途径。






审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电解质
    +关注

    关注

    6

    文章

    824

    浏览量

    20909
  • XRD
    XRD
    +关注

    关注

    0

    文章

    133

    浏览量

    10297
  • 电池系统
    +关注

    关注

    9

    文章

    409

    浏览量

    30545
  • 锂金属电池
    +关注

    关注

    0

    文章

    140

    浏览量

    4679

原文标题:Sci. Adv.:91%!高水系电池锌利用率

文章出处:【微信号:清新电源,微信公众号:清新电源】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    电化学迁移(ECM):电子元件的“隐形杀手” ——失效机理、环境诱因与典型案例解析

    前言在电子设备中,有一种失效现象常被称为“慢性病”——电化学迁移(ECM)。它悄无声息地腐蚀电路,最终导致短路、漏电甚至器件烧毁。尤其在高温高湿环境下可能导致电路短路失效。本文将深入解析ECM的机制
    的头像 发表于 08-14 15:46 ?129次阅读
    <b class='flag-5'>电化学</b>迁移(ECM):电子元件的“隐形杀手” ——失效机理、环境诱因与典型案例解析

    求助,怎么提高电化学式CO传感器的精度?

    请问各位大佬们,我在研究电化学式CO传感器电路遇到了点问题, 我用串口输出PA5输出端的ADC,波动大概有25个ADC(12位4096,3V),但是相同环境条件软件条件,我在传感器输出端接
    发表于 08-11 08:54

    锡膏如何征服高功率封装?文破解高密度封装的散热密码

    锡膏是专为芯片设计的锡基焊料,通过冶金结合实现高强度、高导热连接,对比传统银胶与普通锡膏,具备超高导热(60-70W/m?K)、高强度(剪切强度 40MPa+)、精密填充(间隙
    的头像 发表于 04-10 17:50 ?669次阅读
    <b class='flag-5'>固</b><b class='flag-5'>晶</b>锡膏如何征服高功率封装?<b class='flag-5'>一</b>文破解高密度封装的散热密码<b class='flag-5'>固</b><b class='flag-5'>晶</b>

    EtherCAT转CANopen网关在半导体机设备上的应用

    EtherCAT转CANopen网关在半导体机设备上的应用主要体现在以下几个方面:实现设备间的无缝通信在半导体机设备中,可能同时存在使用EtherCAT和CANopen两
    的头像 发表于 03-28 14:45 ?298次阅读
    EtherCAT转CANopen网关在半导体<b class='flag-5'>固</b><b class='flag-5'>晶</b>机设备上的应用

    基于LMP91000在电化学传感器电极故障检测中的应用详解

    传感器缺失时输出(启用故障检测) 3 电极故障检测的数据分析算法 以上测试给出了电化学传感器的常见电极故障下对应的输出波形,并对各自输出特性进行了简要分析,以下是一种可供参考数据分析处理流程。主要实现
    发表于 02-11 08:02

    全固态锂金属电池的最新研究

    的生长。 在此,美国马里兰大学王春生教授等人报道类还原性亲电试剂与金属-亲核材料接触时获得电子和阳离子,发生电化学还原并形成固体还原性亲电试剂界面层(solid reductive-electrophile interphas
    的头像 发表于 01-23 10:52 ?914次阅读
    全固态锂<b class='flag-5'>金属</b>电池的最新研究

    什么是电化学微通道反应器

    电化学微通道反应器概述 电化学微通道反应器是一种结合了电化学技术和微通道反应器优点的先进化学反应设备。虽然搜索结果中没有直接提到“
    的头像 发表于 01-22 14:34 ?514次阅读

    大为锡膏带你认识锡膏的品质

    锡膏是以导热率为40W/M.K左右锡银铜等金属合金做基体的键合材料,完全满足RoHS及无卤等环保要求,用于LED芯片封装及二极管等功率器件封装,以实现金属之间的融合。
    的头像 发表于 12-20 09:46 ?853次阅读
    大为锡膏带你认识<b class='flag-5'>固</b><b class='flag-5'>晶</b>锡膏的品质

    大为锡膏 | 锡膏/倒装锡膏的特性与应用

    大为锡膏LED锡膏的未来从LED倒装工艺发展的阻碍来看,困扰的不是支架的设计或荧光粉的涂布技术。而是锡膏/倒装锡膏的技术,因为它们与原来的银胶制程工艺差别不大,很容易就克服的工
    的头像 发表于 12-20 09:42 ?719次阅读
    大为锡膏 | <b class='flag-5'>固</b><b class='flag-5'>晶</b>锡膏/倒装锡膏的特性与应用

    锡膏的应用

    锡膏是半导体芯片焊接锡膏的个总称,起到导电、导热和固定的作用,在LED行业的应用是基于倒装芯片的应用。锡膏整个工艺特别的复杂,但是
    的头像 发表于 12-20 09:37 ?1121次阅读
    <b class='flag-5'>固</b><b class='flag-5'>晶</b>锡膏的应用

    大为锡膏 | 倒装锡膏的区别

    锡膏是以导热率为40W/M.K左右锡银铜等金属合金做基体的键合材料,完全满足RoHS及无卤等环保要求,用于LED芯片封装及二极管等功率器件封装,以实现金属之间的融合。
    的头像 发表于 12-18 08:17 ?652次阅读
    大为锡膏 | 倒装<b class='flag-5'>固</b><b class='flag-5'>晶</b>锡膏的区别

    安森美电化学传感与无线传输解决方案助力远程医疗

    和认知。当您将这种传感能力与低功耗模拟前端(AFE)器件和低功耗蓝牙技术相结合,并搭配物联网技术进行远程监控时,可以进提高这些解决方案的有效性。本文将为您介绍电化学传感器的设计原理,以及结合远程医疗监控应用的发展
    发表于 12-10 19:21 ?876次阅读
    安森美<b class='flag-5'>电化学</b>传感与无线传输解决方案助力远程医疗

    电化学气体传感器信号放大调试经验

    非偏压款:即是传感器的两级参考电压是样 ,VRE1=VRE2=200mV; 常见的电化学不带偏压传感器有:硫化氢H2S、氨气NH3、硫化氨(CH3)3N等等。 偏压ETO款:即是传感器的两级
    发表于 11-16 11:26

    扫描速率对各体系的电化学行为有什么影响

    扫描速率(Scan Rate)是电化学测试中个重要的参数,它影响着电化学反应的动力学特性和电极过程的控制步骤。在电化学实验中,扫描速率决定了电位变化的速度,进而影响电极表面的电荷转移
    的头像 发表于 10-14 14:51 ?3796次阅读

    电化学感知技术的新时代

    图1智能健康监测和可穿戴设备是先进传感器平台的关键应用(来源: Adobe Stock) 在科学探索的前沿,电化学感知是一种不可或缺且适应性强的工具,影响着各行各业。从生命科学、环境科学到工业材料
    发表于 09-05 11:43 ?1352次阅读
    <b class='flag-5'>电化学</b>感知技术的新时代