0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

通过集成动力总成系统来降低电动汽车成本并增加行驶里程

电子设计 ? 来源:电子设计 ? 作者:电子设计 ? 2021-11-10 09:35 ? 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

用更少的器件实现更多的汽车应用,既能减轻车重、降低成本,又能提高可靠性。这是集成电动汽车(EV)和混合动力汽车(HEV)设计背后的理念。

什么是集成动力总成?

集成动力总成旨在将车载充电器(OBC)、高压直流/直流(HV DCDC)转换器逆变器和配电单元(PDU)等终端设备结合到一起。机械、控制或动力总成级别均可进行集成,如图1所示。

poYBAGGKRfuAcqSLAAAw2EQe1tk412.jpg

1:电动汽车典型架构概述

为什么动力总成集成有利于混合动力汽车/电动汽车?

集成动力总成终端设备组件能够实现以下优势:

  • 提高功率密度。
  • 提高可靠性。
  • 优化成本。
  • 简化设计和组装,并支持标准化和模块化。

高性能集成动力总成解决方案:电动汽车普及的关键

poYBAGGKRfKASYj6AAATGe06nYo312.png


阅读白皮书

市场应用现状

实现集成动力总成的方法有很多。图2以车载充电器和高压直流/直流转换器集成为例,简要介绍了用于在结合动力总成、控制电路和机械组件时实现高功率密度的四种常见方法。它们分别是:

  • 方法1:形成独立的系统。这种方法已不如几年前流行。
  • 方法2:可分为两个步骤:
    • 直流/直流转换器和车载充电器共享机械外壳,但拥有各自独立的冷却系统。
    • 同时共享外壳和冷却系统(最常选用的方法)。
  • 方法3:进行控制级集成。这种方法正在演变为第4种方法。
  • 方法4:相比于其他三种方法,此方法由于减少了电源电路中的电源开关和磁性元件,所以成本优势更大,但它的控制算法也更复杂。

poYBAGGKRf6AQeM1AAA86QRkiEE248.jpg

2:车载充电器和直流/直流转换器集成的四种常见方法

表1概括了目前市场上的集成架构:

可降低电磁干扰(EMI)的高压三合一集成:车载充电器、高压直流/直流转换器和配电单元的集成(方法3

集成架构:车载充电器和高压直流/直流转换器的集成(方法4

43kW充电器设计:车载充电器、牵引逆变器和牵引电机的集成(方法4

  • 6.6kW车载充电器
  • 2.2kW直流/直流转换器
  • 配电单元

*第三方数据报告显示,这类设计能够使体积和重量减少大概40%,并且使功率密度提高大概40%

  • 6.6kW车载充电器
  • 1.4kW直流/直流转换器
  • 磁集成
  • 共享电源开关
  • 共享控制单元

(一个微控制器[MCU]控制的功率因数校正级,一个微控制器控制的直流/直流级,以及一个高压直流/直流转换器)

  • 交流充电功率高达43kW
  • 共享电源开关
  • 共享电机绕组

1:集成动力总成的三种成功实现

动力总成集成方框图

图3为一个动力总成的方框图,该动力总成实现了电源开关共享和磁集成的架构。

pYYBAGGKRf-AB53pAABTnmijRYg112.png

3:集成架构中的电源开关和磁性组件共享

如图3所示,车载充电器和高压直流/直流转换器都连接至高压电池,因此车载充电器和高压直流/直流转换器的全桥额定电压相同。这样,便可以通过全桥使得车载充电器和高压直流/直流转换器实现电源开关共享。

此外,将图3所示的两个变压器集成在一起还可以实现磁集成。这是因为它们在高压侧的额定电压相同,能够最终形成三端变压器。

性能提升

图4展示了如何通过内置降压转换器来帮助提升低压输出的性能。

poYBAGGKRgGACLTIAABk_mE-Y2c658.png

4:提升低压输出的性能

当这个集成拓扑在高压电池充电条件下工作时,高压输出可得到精确控制。但是,由于变压器的两个端子耦合在一起,所以低压输出的性能会受到限制。有一个简单的方法可以提升低压输出性能,那就是添加一个内置降压转换器。但这样做的代价就是会导致成本增加。

共享组件

像车载充电器和高压直流/直流转换器集成一样,车载充电器中的功率因数校正级和三个半桥的额定电压非常接近。这样,便可以通过由两个终端设备组件共享的三个半桥来实现电源开关共享,如图5所示。这可以降低成本并提高功率密度。

pYYBAGGKRgOAZoOBAABXT2Kbq6c274.png

5:动力总成集成设计中的组件共享

由于一个电机一般有三个绕组,因此也可以将这些绕组用作车载充电器中的功率因数校正电感器,借此实现磁集成。这也有助于降低设计成本和提高功率密度。

结束语

从低级别的机械集成到高级别的电子集成,集成的发展仍在继续。随着集成级别的提高,系统的复杂性也将增加。但是,每种架构变体都会带来不同的设计挑战,包括:

  • 为进一步优化性能,必须精心设计磁集成。
  • 采用集成系统时,控制算法会更加复杂。
  • 设计高效的冷却系统,以适应更小型系统的散热需求。

灵活性是动力总成集成的关键。众多方法任您选择,您可以任意地探索各种级别的集成设计。

其他资源

审核编辑:符乾江
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电动汽车
    +关注

    关注

    156

    文章

    12450

    浏览量

    234873
  • 动力系统
    +关注

    关注

    1

    文章

    307

    浏览量

    21118
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    电动汽车用异步电动机混合控制系统的研究

    摘 要:电动汽车驱动系统的核心技术就是对电动机的控制,目前比较流行采用的是矢量控制(FOC)和直接转矩控制(DTC)。然而这两种方法有各自的优缺点,为了能够满足电动汽车在不同的工况下转
    发表于 07-24 11:51

    英飞凌BMS解决方案推动电动汽车创新

    随着电动汽车越来越被大众接受,车辆电气化、智能化程度越来越高,如何提高电动汽车的续航里程,同时保障车辆安全可靠持久运行是当前最主要的技术难题之一。而先进的电池管理系统 (BMS)有助于
    的头像 发表于 06-26 14:50 ?832次阅读
    英飞凌BMS解决方案推动<b class='flag-5'>电动汽车</b>创新

    无刷直流电机电动汽车再生ABS双闭环控制研究

    仿真模型,并进行仿真。结果表明,系统具有良好的实时性、稳定性和鲁棒性;而再生ABS回收的制动能量随路面附着系数的增大而增加。 纯分享帖,点击下方附件免费获取完整资料~~~ *附件:无刷直流电机电动汽车
    发表于 06-26 13:43

    电动汽车动力电池管理系统设计

    电动汽车动力电池管理系统设计
    发表于 06-08 09:58 ?1次下载

    突破电动汽车动力系统的技术瓶颈:先进的SiC沟槽技术

    随着汽车市场向主流采用加速,电力电子技术已成为创新的基石,推动了卓越的性能和效率。在这一技术演变的前沿,碳化硅(SiC)功率模块作为一项关键进展,重新定义了电动动力系统的能力。电动汽车的日益普及
    的头像 发表于 03-12 11:40 ?709次阅读
    突破<b class='flag-5'>电动汽车</b><b class='flag-5'>动力系统</b>的技术瓶颈:先进的SiC沟槽技术

    轮毂电机驱动电动汽车垂向动力学控制研究综述

    从轮毂电机驱动电动汽车整车动力学特性、簧下质量增加对车辆动力学性能影响以及轮 毂电机不平衡电磁力对车辆动力学性能影响 3 个方面,介绍了 国
    发表于 03-07 15:21

    双电机电动汽车驱动防滑控制

    为保持电动汽车在不同路面条件下的操纵稳定性,保证车辆良好的动力性能和转向能力,对汽车动力的合理控制尤为关键。采用模糊控制理论识别当前路面最大附着系数,得到路面最优滑转率;以最优滑转率
    发表于 03-05 18:43

    氮化镓技术推动电动汽车电源设计革新!

    电动汽车设计师致力于通过提升功率、缩小系统尺寸减少散热需求,使电动汽车更轻量化、自动化,配备
    的头像 发表于 03-03 11:41 ?630次阅读
    氮化镓技术推动<b class='flag-5'>电动汽车</b>电源设计革新!

    一文讲清楚电动汽车充电系统

    充电系统是新能源汽车主要的能源供给系统,为保障车辆持续行驶提供动力能源。电动汽车的充电
    的头像 发表于 01-24 16:58 ?3370次阅读
    一文讲清楚<b class='flag-5'>电动汽车</b>充电<b class='flag-5'>系统</b>

    SiC解决方案:硅阳极能否增加电动汽车的续航里程

    。ParacleteEnergy开发了一种硅阳极技术,其能量密度更高,成本低于市场上现有的LFP电池。根据一项研究,SILO硅阳极可以将电池重量减半,并将电动汽车的续航里程翻倍
    的头像 发表于 12-27 11:21 ?617次阅读
    SiC解决方案:硅阳极能否<b class='flag-5'>增加</b><b class='flag-5'>电动汽车</b>的续航<b class='flag-5'>里程</b>

    电动汽车制动系统与传统汽车的区别

    随着全球对可持续能源和减少碳排放的关注日益增加电动汽车(EV)逐渐成为主流交通工具。电动汽车的制动系统与传统内燃机汽车(ICE)相比,有着
    的头像 发表于 11-28 10:02 ?1525次阅读

    无线充电技术:电动汽车未来的里程焦虑解药

    长期以来,电动汽车里程焦虑一直是阻碍消费者购买的重要因素。然而,无线充电技术的出现有望改变这一局面,为电动汽车的普及带来新的希望。   无线充电技术通过简化充电过程,
    的头像 发表于 10-24 14:22 ?1415次阅读

    法雷奥与CEA合作开展先进的电力电子研究,为未来电动汽车做准备

    的关键。法雷奥和 CEA 的团队将共同致力于创新电子技术的高级研究,以提高电动汽车的效率(增加行驶里程)、优化动力系统减轻车载电力电子设备
    的头像 发表于 10-24 10:00 ?582次阅读

    NXP公司电动汽车牵引逆变器解决方案

    随着电动汽车在能耗方面越来越卷,电动汽车驱动逆变器在电动汽车动力系统中的效率越来越重要。逆变器的效率直接影响到车辆的续航里程和电池寿命,同时
    的头像 发表于 10-22 16:21 ?1145次阅读
    NXP公司<b class='flag-5'>电动汽车</b>牵引逆变器解决方案

    电动汽车有序充电优化策略

    的优化问题。无序充电不仅可能导致电网负荷高峰,影响电网稳定,还可能增加充电成本降低用户体验。因此,探索电动汽车有序充电优化策略,对于推动电动汽车
    的头像 发表于 08-24 12:25 ?3386次阅读
    <b class='flag-5'>电动汽车</b>有序充电优化策略