0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

深度神经网络,通过使用数学模型来处理图像

倩倩 ? 来源:新经网 ? 作者:新经网 ? 2020-12-16 10:22 ? 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

它们具有看似复杂的结果,但也有可能被愚弄,范围从相对无害-将动物误识别为另一动物-到引导自动驾驶汽车的网络将停车标志误解为指示停车标志的潜在危险是可以安全进行的。

休斯顿大学的一位哲学家在发表于《自然机器智能》上的一篇论文中暗示,关于这些假定故障背后原因的普遍假设可能是错误的,这些信息对于评估这些网络的可靠性至关重要。

随着机器学习和其他形式的人工智能越来越深入地融入社会,从自动柜员机到网络安全系统,其用途广泛,UH哲学副教授卡梅伦·巴克纳(Cameron Buckner)表示,了解由什么导致的明显故障的来源至关重要。

研究人员称其为“对抗性例子”,是指当深度神经网络系统遇到用于构建网络的训练输入之外的信息时,会误判图像或其他数据。它们很罕见,被称为“对抗性”,因为它们通常是由另一个机器学习网络创建或发现的-机器学习领域中的一种边缘技术,介于创建复杂示例的更复杂方法与检测和避免它们的更复杂方法之间。

巴克纳说:“这些对抗性事件中的一些反而可能是人工产物,为了更好地了解这些网络的可靠性,我们需要更好地了解它们是什么。”

换句话说,不发火可能是由网络需要处理的内容和所涉及的实际模式之间的相互作用引起的。这与完全被误解不是完全一样的。

巴克纳写道:“理解对抗性例子的含义需要探索第三种可能性:至少其中一些模式是人工制品。”“……因此,目前简单地丢弃这些模式既有代价,也有天真地使用它们的危险。”

导致这些机器学习系统犯错误的对抗事件不一定是故意的渎职造成的,但这是最高的风险所在。

巴克纳说:“这意味着恶意行为者可能欺骗依赖于本来可靠的网络的系统。”“那有安全应用程序。”

责任编辑:lq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 网络安全
    +关注

    关注

    11

    文章

    3368

    浏览量

    61744
  • 机器学习
    +关注

    关注

    66

    文章

    8517

    浏览量

    135167
  • 自动驾驶
    +关注

    关注

    790

    文章

    14418

    浏览量

    171679
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    无刷电机小波神经网络转子位置检测方法的研究

    摘要:论文通过对无刷电机数学模型的推导,得出转角:与三相相电压之间存在映射关系,因此构建了一个以三相相电压为输人,转角为输出的小波神经网络来实现转角预测,并采用改进遗传算法来训练网络
    发表于 06-25 13:06

    BP神经网络深度学习的关系

    ),是一种多层前馈神经网络,它通过反向传播算法进行训练。BP神经网络由输入层、一个或多个隐藏层和输出层组成,通过逐层递减的方式调整网络权重,
    的头像 发表于 02-12 15:15 ?1026次阅读

    BP神经网络图像识别中的应用

    BP神经网络图像识别中发挥着重要作用,其多层结构使得网络能够学习到复杂的特征表达,适用于处理非线性问题。以下是对BP神经网络
    的头像 发表于 02-12 15:12 ?821次阅读

    深度学习入门:简单神经网络的构建与实现

    深度学习中,神经网络是核心模型。今天我们用 Python 和 NumPy 构建一个简单的神经网络神经网络由多个
    的头像 发表于 01-23 13:52 ?617次阅读

    人工神经网络的原理和多种神经网络架构方法

    所拟合的数学模型的形式受到大脑中神经元的连接和行为的启发,最初是为了研究大脑功能而设计的。然而,数据科学中常用的神经网络作为大脑模型已经过时,现在它们只是能够在某些应用中提供最先进性能
    的头像 发表于 01-09 10:24 ?1472次阅读
    人工<b class='flag-5'>神经网络</b>的原理和多种<b class='flag-5'>神经网络</b>架构方法

    卷积神经网络的实现工具与框架

    卷积神经网络因其在图像和视频处理任务中的卓越性能而广受欢迎。随着深度学习技术的快速发展,多种实现工具和框架应运而生,为研究人员和开发者提供了强大的支持。 TensorFlow 概述
    的头像 发表于 11-15 15:20 ?802次阅读

    卷积神经网络在自然语言处理中的应用

    自然语言处理是人工智能领域的一个重要分支,它致力于使计算机能够理解、解释和生成人类语言。随着深度学习技术的发展,卷积神经网络(CNNs)作为一种强大的模型,在
    的头像 发表于 11-15 14:58 ?941次阅读

    卷积神经网络与传统神经网络的比较

    深度学习领域,神经网络模型被广泛应用于各种任务,如图像识别、自然语言处理和游戏智能等。其中,卷积神经网
    的头像 发表于 11-15 14:53 ?2083次阅读

    深度学习中的卷积神经网络模型

    深度学习近年来在多个领域取得了显著的进展,尤其是在图像识别、语音识别和自然语言处理等方面。卷积神经网络作为深度学习的一个分支,因其在
    的头像 发表于 11-15 14:52 ?968次阅读

    RNN模型与传统神经网络的区别

    神经网络是机器学习领域中的一种强大工具,它们能够模拟人脑处理信息的方式。随着技术的发展,神经网络的类型也在不断增加,其中循环神经网络(RNN)和传统
    的头像 发表于 11-15 09:42 ?1340次阅读

    LSTM神经网络图像处理中的应用

    长短期记忆(LSTM)神经网络是一种特殊的循环神经网络(RNN),它能够学习长期依赖关系。虽然LSTM最初是为处理序列数据设计的,但近年来,它在图像
    的头像 发表于 11-13 10:12 ?1775次阅读

    如何使用Python构建LSTM神经网络模型

    构建一个LSTM(长短期记忆)神经网络模型是一个涉及多个步骤的过程。以下是使用Python和Keras库构建LSTM模型的指南。 1. 安装必要的库 首先,确保你已经安装了Python和以下库
    的头像 发表于 11-13 10:10 ?1803次阅读

    LSTM神经网络与传统RNN的区别

    深度学习领域,循环神经网络(RNN)因其能够处理序列数据而受到广泛关注。然而,传统RNN在处理长序列时存在梯度消失或梯度爆炸的问题。为了解决这一问题,LSTM(长短期记忆)
    的头像 发表于 11-13 09:58 ?1365次阅读

    关于卷积神经网络,这些概念你厘清了么~

    必须通过决策阈值做出决定。 另一个区别是AI并不依赖固定的规则,而是要经过训练。训练过程需要将大量猫的图像展示给神经网络以供其学习。最终,神经网络将能够独立识别
    发表于 10-24 13:56

    matlab 神经网络 数学建模数值分析

    matlab神经网络 数学建模数值分析 精通的可以讨论下
    发表于 09-18 15:14