0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

如何打造中文版 GPT-3?GPT-4 可能如何演化?

如意 ? 来源:品玩 ? 作者:Decode ? 2020-09-02 10:21 ? 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

既能问答、翻译、写文章,也能写代码、算公式、画图标。..。..OpenAI 2020 年 5 月推出的 GPT-3,因其神奇的通用性而走红 AI 领域。

GPT-3 是用英文语料做预训练的,主要应用于英文相关场景,而中文业界和学术界已经出现了期待中文版 GPT-3 的声音。

“GPT-3 与出门问问的技术基础紧密相关。虽然现阶段 GPT 模型还并非完美,但它是目前我们能看到,通往更加通用的语言智能的重要路径之一。”从事中文语音交互的 AI 公司出门问问创始人兼 CEO 李志飞告诉品玩。

出门问问一直对更加通用的语言智能很感兴趣。团队正深入理解 GPT-3 的相关论文,推进相关实验,尝试提升训练效率等工作。

如何打造中文版 GPT-3?

那么,如果要打造一个中文版的 GPT-3,该怎么操作?

“与英文相比,中文版 GPT-3 的诞生将经历一个从零到一的过程,可以借鉴英文 GPT-3 技术迭代的相关经验。”李志飞对品玩表示。GPT-3 的技术迭代之路,是一个不断增大训练数据量和模型参数规模的过程。

本质上,GPT-3 是一个大规模预训练 NLP(自然语言处理) 模型。大规模预训练是指,先用大量没有标注的语料做无监督学习,得到一套模型参数,然后再用少量标注语料精调,最后应用于具体的下游 NLP 任务。这种模式已经诞生了不少成功的 NLP 模型,如 Google 2018 年推出的 Bert,但其通用性上依然不足。直到 GPT-3 推出,让这类预训练模型的通用性上了一个台阶。

从 GPT 第一代到 GPT-3,其模型层面一直都是基于 Transformer(一种领先的提取语义特征方法)做预训练,没有什么改变,但训练数据量和模型规模十倍、千倍地增长。

2018 年 6 月发布的 GPT 第一代,预训练数据量仅为 5GB。GPT-2 增长为 40GB,GPT-3 更是猛增到 45TB(等于 45000GB)。而模型规模方面,从 GPT 第一代的 1.17 亿参数量,指数增长为 1750 亿。

随着数据量和模型规模的增大,GPT 逐渐舍弃了用少数标注语料精调这一步,完全基于预训练得出的参数,去做下游任务,精确度依然有一定保证。

GPT 所需算力也越来越夸张,初代 GPT 在 8 个 GPU 上训练一个月就行,而 GPT-2 需要在 256 个 Google Cloud TPU v3 上训练(256 美元每小时),训练时长未知。到 GPT-3,预估训练一个模型的费用超过 460 万美元。

相应地,参与到 GPT 论文的作者从初代的 4 位,增加到第三代的 31 位。并且,31 位作者分工明确,有人负责训练模型,有人负责收集和过滤数据,有人负责实施具体的自然语言任务,有人负责开发更快的 GPU 内核。

借鉴 GPT-3 的迭代经验,李志飞认为开展中文 GPT-3 模型训练比较合理的路径是:“从中小规模的模型入手,开展研究及实验,达到一定效果后再推广到大模型上进行验证”。

至于人力方面的配置,他表示 GPT 是一个非常综合的大系统工程,涉及到学术、工程、商业等团队之间的大规模协同。一般需要搭建几十人的团队,其中包括科学家、工程师、项目经理等角色。

虽然可以借鉴英文 GPT-3 技术迭代的相关经验,但是在创建中文版 GPT-3 的过程中,也需要解决很多独特的问题,如中文训练数据、算力等。

“一方面,我们需要将更多的时间精力,投入在高质量、多样性的训练文本的获取上。”李志飞说,“另一方面,计算的效率问题,也是目前大规模深度学习模型训练所面临的共同挑战。”

从总体规模、数据质量及多样性上看,目前能够从互联网上获取到的高质量中文数据,相比英文数据要少一些,这可能会影响到中文模型的训练效果。不过,从已有的研究分析结果来看,数据并非越多越好。

“我们可以结合数据优化、数据生成等方式来提高训练语料的有效性。初步来看,具体训练语料,主要包括百科问答、新闻资讯、博客电子书类数据及其它泛爬数据,经过数据处理后其规模在 500GB 左右。”李志飞说。

GPT-3 模型参数到达 1750 亿,其背后训练资源的开销非常庞大,预估训练一个模型的费用超过 460 万美元。不过,随着国内外各项研究的推进,预训练模型的训练效率将会不断提升。

“我们可以借鉴其他预训练语言模型的优化经验,在训练语料、网络结构、模型压缩等方面多做工作,预计将模型的单次训练成本降低一个数量级。”李志飞说。

看上去,构建中文 GPT-3 是一件很费劲的事情,但这项工作带来的回报也非常可观。李志飞对品玩表示,GPT-3 展现出的通用能力,可以将其视为下一代搜索引擎和 AI 助理,所以这项技术本身的商业应用场景可以很广阔。

其次,构建 GPT 模型的过程中,将涉及到超算中心和AI算法平台的建设,这些算力和算法平台可以为企业、科研机构、政府提供底层服务,通过开放平台为产业赋能,如智能车载、智慧城市、科技金融等领域。

另外,虽然 GPT 本质是一个关于语言的时序模型,但语言之外的其它时序问题,如经济、股票、交通等行为预测,也有可能成为潜在应用场景。

GPT-4 可能如何演化?

GPT-3 目前的表现虽然令人震惊,但它本身还存在着很多问题,比如它并不能真正理解文本的含义,只是对词语进行排列组合。而且,研究员也并未完全了解它的工作机制。李志飞预测,下一个版本 GPT-4 将会在模型规模、小样本学习、多模态、学习反馈机制和与任务执行结合方面进行改进。

毫无疑问,GPT-4 模型会更加暴力。李志飞说:“下一代 GPT 模型必然在数据规模、模型参数、算力等方面都会有很大提升。另外,下一代的 GPT 模型可能不局限于英文,将能处理更多跨语言层面的任务。”

目前的 GPT-3 模型还严重依赖小样本学习机制。虽然 GPT-3 不需要精调,但是在完成具体的 NLP 任务时,还是会把少量和任务相关的实例给模型。在零样本和单样本的任务上,GPT-3 退化比较明显,事实上后面两个任务才是更普遍遇到的问题。

“下一代 GPT 模型需要加强在理论上的泛化能力,以便更好地处理零样本和单样本的任务。”李志飞表示。

下一代的 GPT 模型极有可能是一个多模态的模型。OpenAI 认为,纯文本的自回归预训练模型达到当下的规模,已经快接近极限了,需要往多模态模型方向发展,把文本、语音、图像这些内容结合起来进行学习。李志飞认为,多模态模型,一方面可以引入语言之外的更多维度的信息,另外一方面可以促使模型学习完成更通用化的表示,以此加强模型的泛化能力。

另外一个重要的进化,是引入学习反馈机制。目前GPT模型只是能够在完全无监督的条件下,读取海量互联网文本数据进行学习,但是人类的学习过程是跟物理世界有交互的,只有这样才能建立更多物理世界的“常识”,比如说杯子应该在桌子上面而不是下面。如果要到达更加通用的状态,除了多模态外,还要在学习过程中引入物理世界的反馈机制。

“当然,这个反馈也是通过数据来实现的,而不是让GPT真正像人一样去探索物理世界。”李志飞说道,“另外,鉴于 GPT 希望实现完全无监督学习的初衷,这个反馈更多是隐式的和延迟的,而不是显式的和及时的。为了做到这些,需要引入强化学习(re-inforcement learning)之类的机制。”

李志飞还认为,GPT-4 可能引入任务执行能力。现在的 GPT 主要是一个预测和生成的引擎,而不是一个任务的执行器。

比如,你跟GPT说“帮我订一下明天下午三点左右北京去上海的经济舱的机票”,目前GPT也许能理解这句话的意思,但还没有能力自动调取订票网站的 API(应用程序接口)去执行任务。如果不具备这种执行能力,GPT的通用性就很有限,因为每一个任务都需要额外增加代码用以执行理解后的任务。所以,GPT 必须学习怎么直接执行任务。

总体而言,李志飞对 GPT 的未来发展非常乐观:“未来互联网上的很多内容或知识,都会是由类 GPT 模型产生或加工过的。所以某种程度上,GPT的发展代表着语言主权的演进,且它将有潜力成为一种生态系统。”
责编AJX

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 人机交互
    +关注

    关注

    12

    文章

    1260

    浏览量

    56895
  • AI
    AI
    +关注

    关注

    88

    文章

    35760

    浏览量

    282545
  • 应用程序
    +关注

    关注

    38

    文章

    3339

    浏览量

    59223
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    GPT-5震撼发布:AI领域的重大飞跃

    电子发烧友网报道(文/李弯弯)2025年8月8日凌晨1点,OpenAI以一场长达1小时的线上发布会正式推出GPT-5。这场被业界称为“AI进化分水岭”的发布,终结了长达两年的技术猜测,更以多维度性能
    的头像 发表于 08-09 07:44 ?8397次阅读
    <b class='flag-5'>GPT</b>-5震撼发布:AI领域的重大飞跃

    OpenAI或在周五凌晨发布GPT-5 OpenAI以低价向美国政府提供ChatGPT

    外界一直在期待的OpenAI新一代大语言模型GPT-5或将发布。据外媒的报道,GPT-5很可能在周五凌晨发布。这是OpenAI在2023年的3月份推出自然语言处理模型
    的头像 发表于 08-07 14:13 ?1322次阅读

    GPT-5即将面市 性能远超GPT-4

    行业芯事
    电子发烧友网官方
    发布于 :2025年06月04日 13:38:23

    OpenAI宣布GPT 4o升智计划

    透露,GPT 4o的智力水平将得到显著提升,目标直指o3 pro的水平。这一升级不仅意味着GPT 4o在理解和生成文本方面的能力将得到质的飞
    的头像 发表于 02-17 14:24 ?662次阅读

    OpenAI即将发布GPT-4.5与GPT-5

    GPT-4.5将在未来几周内率先亮相,它将是OpenAI通用GPT-4模型的继承者。这款新的算法在技术上进行了诸多优化和升级,旨在为用户提供更加精准、高效的AI服务。 而在GPT-4.5发布后不久
    的头像 发表于 02-13 13:43 ?745次阅读

    OpenAI即将推出GPT-5模型

    先进技术,其中包括备受瞩目的o3工具。通过整合这些技术,GPT-5模型将实现更加强大的功能和性能。 值得一提的是,GPT-5模型将被广泛应用于OpenAI的聊天机器人ChatGPT以及API平台。这意味着用户将能够体验到更加智能
    的头像 发表于 02-13 11:21 ?689次阅读

    OpenAI CEO预告GPT-4.5及GPT-5未来规划

    全新的GPT-5模型。这一模型将整合包括o3在内的多项OpenAI先进技术,旨在为用户带来更加智能、高效的使用体验。值得注意的是,免费版的ChatGPT也将在标准智能设置下无限制地使用GPT-5进行对话,这无疑将进一步提升用户的
    的头像 发表于 02-13 10:02 ?538次阅读

    如何在边缘端获得GPT4-V的能力:算力魔方+MiniCPM-V 2.6

    GPT4-V的能力:MiniCPM-V 2.6 。 MiniCPM-V 2.6是MiniCPM-V系列最新、性能最佳的模型,基于SigLip-400M和Qwen2-7B构建,共8B参数。在最新版
    的头像 发表于 01-20 13:40 ?698次阅读
    如何在边缘端获得<b class='flag-5'>GPT4</b>-V的能力:算力魔方+MiniCPM-V 2.6

    OpenAI GPT-5开发滞后:训练成本高昂

    近日,据最新消息,OpenAI在推进其备受期待的下一代旗舰模型GPT-5的开发进程上遇到了困难。由于计算成本高昂且高质量训练数据稀缺,GPT-5的开发已经落后于原定计划半年之久。 据悉,OpenAI
    的头像 发表于 12-23 11:04 ?1044次阅读

    解锁 GPT-4o!2024 ChatGPT Plus 代升级全攻略(附国内支付方法)

    ChatGPT Plus 每月 20 美元,OpenAI 承诺 Plus 用户享有更快的响应速度、优先使用新功能及最新模型,包括强大的 GPT-4o。本文将分享 2024 年 ChatGPT
    的头像 发表于 10-29 18:17 ?2723次阅读

    Llama 3GPT-4 比较

    随着人工智能技术的飞速发展,我们见证了一代又一代的AI模型不断突破界限,为各行各业带来革命性的变化。在这场技术竞赛中,Llama 3GPT-4作为两个备受瞩目的模型,它们代表了当前AI领域的最前
    的头像 发表于 10-27 14:17 ?1316次阅读

    科大讯飞发布讯飞星火4.0 Turbo:七大能力超GPT-4 Turbo

    超过GPT-4 Turbo,数学能力和代码能力更是超过了Open AI最新一代GPT模型GPT-4o。此外,其效率相对提升50%。
    的头像 发表于 10-24 11:39 ?1173次阅读

    英伟达预测机器人领域或迎“GPT-3时刻”

    未来2-3年内,机器人基础模型的研究将迎来重大突破,这一时刻被形象地比喻为机器人领域的“GPT-3时刻”。
    的头像 发表于 09-20 17:05 ?1145次阅读

    Jim Fan展望:机器人领域即将迎来GPT-3式突破

    英伟达科学家9月19日,科技媒体The Decoder发布了一则引人关注的报道,英伟达高级科学家Jim Fan在近期预测,机器人技术将在未来两到三年内迎来类似GPT-3在语言处理领域的革命性突破,他称之为机器人领域的“GPT-3时刻”。
    的头像 发表于 09-19 15:13 ?1024次阅读

    OpenAI宣布启动GPT Next计划

     9月4日最新资讯,OpenAI Japan 在KDDI峰会上亮相,揭开了其即将问世的下一代AI模型的神秘面纱,并正式宣布了旨在2024年启动的GPT Next宏伟计划。
    的头像 发表于 09-04 14:51 ?1003次阅读