0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

铜表面粗糙度的变化会引起PCB材料的色散变化吗?

iIeQ_mwrfnet ? 来源:微波射频网 ? 作者:微波射频网 ? 2020-06-24 11:13 ? 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

尽管毫米波频率下的印刷电路板(PCB)的设计和制造都从考虑电路材料开始,但是选择何种传输线技术对高频下的电路性能起着相当大的作用。随着蜂窝和无线通信不断占用RF/微波频段导致带宽较窄,而毫米波可以提供足够的带宽,科研人员对短程、低功耗系统(例如汽车雷达和第五代(5G)无线网络)的毫米波频率的兴趣持续增长。作为毫米波频率下常用的传输线技术,电路设计人员可能首先想到微带线,接地共面波导(GCPW)甚至矩形波导,但是带状线性能又如何呢?在紧凑密集电路中,带状线在24 GHz(许多5G基站将工作在更高的频率下)或者更高的频率下表现良好。在毫米波频率下设计和构造带状线电路时,要注意几点事项。

带状线的结构相对独特,常被与扁平的同轴电缆相比较。它具有多层结构:中间导体由上下两层的介质层(电路材料)包围,介质层外又由顶部和底部的金属屏蔽层包围。这些层叠结构增加了电路复杂性,但使导体和传输线有着较好隔离度,从而可以在RF、微波和毫米波频率(取决于PCB材料的特性)上实现极小的电路。

虽然带状线的复杂性增加了制造时间和成本,但也表现出一些出色的优点。除了高隔离度和小型化外,带状线电路的顶部和底部接地平面有助于降低辐射损耗,尤其是在毫米波频段,微带电路的高辐射损耗有时会使它们变成不需要的天线。带状线可能没有微带线或GCPW加工简单,但对于某些毫米波电路设计,它可能是最佳的传输线选择,尤其是在高性能(无干扰)的密集封装电路,或者不希望出现电路辐射和电磁干扰(EMI)的敏感应用中。

幸运的是,通过几个试验证明效果良好的设计和制造技巧,在77GHz或者更高频率下,带状线PCB的出色性能始终可以“套用”。如果需要快速了解微带线和GCPW,可以观看下面技术微学堂视频“微带线与接地共面波导在毫米波频段的性能比较”

与其他传输线格式一样,带状线电路也会随着频率的增加而缩小,以适应毫米波这样小波长的电路,但是由于其独特的多层结构,电路间将能够始终保持高隔离度。带状线电路还具有较宽的带宽,因此单个毫米波电路设计可以支持多个应用。在毫米波频率上设计和实现带状线电路时,必须采取适当的预防措施,尽可能达到最优性能,以避免产生不必要的信号,例如与宽带覆盖相关的寄生信号模式。PCB材料的选择对带状线电路在毫米波频率下的性能起着关键作用。

注意事项

由于毫米波电路的波长短,通常使用薄的层压板。但是,即使使用非常薄的介电材料,带状线及其多层电路在给定的频率下通常也会比微带或GCPW电路更厚。在较高频率下,PCB介质材料的一致性对于信号传播一致性(计算机辅助仿真)至关重要。在毫米波频率下,带状线电路中的多层介质材料结构会比微带和GCPW电路具有更高的介质损耗和插入损耗。但是,通过选取低介质损耗或低损耗因子(Df)的电路材料入手,即使在毫米波频率下,带状线插入损耗也可以得到控制和最小化。

对于毫米波频率下的带状线电路,由于波长小,通常在较薄的介质材料上加工,铜箔导体表面粗糙度可能是一个需要关注的问题。与较光滑的铜箔导体表面相比,较粗糙的铜箔导体表面将减缓电磁波在导体中的传播。此外,导体和PCB表面粗糙度的不一致会导致信号在PCB上的电磁传播特性发生变化,尤为明显是在毫米波频率下的相位特性的变化。

铜表面粗糙度的变化会引起PCB材料的色散变化。PCB的色散是导体和介质材料的函数。不一致的色散可能不会对RF甚至微波频率下的电路造成影响,但会导致毫米波频率下某些对此很敏感的电路相位响应发生变化。

与从同轴连接器向微带或GCPW电路信号过渡的相对简单相比,带状线电路要实现从同轴连接器到PCB的有效信号过渡,需要进行适当的准备。在微带电路中,假设连接器中心导体和单接地面层的电路传输线具有相同的阻抗(例如50Ω),直接连接通常就可以有效的将信号能量从连接器传输到电路。

因为带状线的电路信号平面不在表面,所以从同轴连接器到带状线电路的信号过渡需要多次尝试。要使连接器中心导体与带状线电路导体相连接,只有通过金属化过孔(PTH)的方式来实现。由于工作频率的波长较小,信号馈入或者从连接器中心导体过渡到带状线信号平面通常通过直径极小的金属化过孔。为了在带状线电路中形成均匀的接地面,通常使用相似的PTH过孔使电路的顶部和底部接地层连接,这样最大程度地减少不同接地面中电流密度差异的可能性。当然,重要的是尽量减小过渡PTH的长度。在带状线电路中,信号路径中任何不必要的长度都可能导致反射和回波损耗降低,甚至产生寄生或谐波信号。

哪种类型的层压板最适合于毫米波频率下带状线电路呢?罗杰斯公司的RO3003层压板就是一个例子,它是陶瓷填充的聚四氟乙烯(PTFE)复合材料。整个材料的介电常数都保持在3.00±0.04以内,具有77GHz汽车雷达毫米波频段电路所需的一致性。RO3003层压板在10GHz时的Df低至0.0010,且具有极其出色的温度稳定性。同时,材料的三个轴上也具有一致的热膨胀系数(CTE),CTE一致性可确保在整个温度范围内,在毫米波频率下的带状线路中的极小过孔可保持完整性和高可靠性。
责任编辑:pj

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • pcb
    pcb
    +关注

    关注

    4374

    文章

    23562

    浏览量

    412636
  • 连接器
    +关注

    关注

    99

    文章

    15553

    浏览量

    141721
  • 毫米波
    +关注

    关注

    21

    文章

    1981

    浏览量

    66398
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    【新启航】碳化硅衬底 TTV 厚度测量中表面粗糙度对结果的影响研究

    摘要 本文聚焦碳化硅衬底 TTV 厚度测量过程,深入探究表面粗糙度对测量结果的影响机制,通过理论分析与实验验证,揭示表面粗糙度与测量误差的关联,为优化碳化硅衬底 TTV 测量方法、提升
    的头像 发表于 08-18 14:33 ?86次阅读
    【新启航】碳化硅衬底 TTV 厚度测量中<b class='flag-5'>表面</b><b class='flag-5'>粗糙度</b>对结果的影响研究

    电动机噪声、振动和声振粗糙度开发:使用低计算成本的系统级模型预测早期噪声、振动和声振粗糙度

    优势使用计算成本低的系统级模型在动态运行条件下对电驱动装置执行早期噪声、振动和声振粗糙度评估优化电机控制策略并做出更好的设计选择,以提高电动汽车的噪声、振动和声振粗糙度使用Simcenter节省时间
    的头像 发表于 08-13 11:46 ?166次阅读
    电动机噪声、振动和声振<b class='flag-5'>粗糙度</b>开发:使用低计算成本的系统级模型预测早期噪声、振动和声振<b class='flag-5'>粗糙度</b>

    锂离子电池集流体—铜箔的表面粗糙度表征研究

    的固体电解质相间膜,减少锂枝晶的生长,并延长电池的循环寿命。美能光子湾3D共聚焦显微镜,能够快速高效完成亚微米级形貌和表面粗糙度的精准测量任务,协助研究人员观察集流
    的头像 发表于 08-05 17:56 ?121次阅读
    锂离子电池集流体—铜箔的<b class='flag-5'>表面</b><b class='flag-5'>粗糙度</b>表征研究

    增材制造工艺参数对表面粗糙度的影响及3D显微镜测量技术研究

    近年来,增材制造技术在工业与学术领域持续突破,其中熔融沉积成型(FDM)技术因其低成本与复杂零件制造能力,成为研究与应用的热点。然而,FDM制件的表面粗糙度问题直接影响其机械性能与功能适用性。为系统
    的头像 发表于 08-05 17:50 ?136次阅读
    增材制造工艺参数对<b class='flag-5'>表面</b><b class='flag-5'>粗糙度</b>的影响及3D显微镜测量技术研究

    台阶仪在3D打印中的应用:精确测量物体表面粗糙度

    增材制造(AM)技术通过逐层堆积材料实现复杂结构成型,但3D打印表面质量存在层厚均匀性和组装方式导致的台阶效应问题,表面粗糙度直接影响机械性能与功能可靠性,尤其在航空航天、生物医疗等领
    的头像 发表于 07-22 09:51 ?161次阅读
    台阶仪在3D打印中的应用:精确测量物体<b class='flag-5'>表面</b><b class='flag-5'>粗糙度</b>

    台阶仪应用 | 半导体GaAs/Si异质外延层表面粗糙度优化

    ,通过对样品表面粗糙度的测试,为优化生长工艺、提升薄膜质量提供了关键数据支撑,对探究外延片生长规律具有重要意义。1实验方法flexfilm本研究中使用台阶仪通过接
    的头像 发表于 07-22 09:51 ?157次阅读
    台阶仪应用 | 半导体GaAs/Si异质外延层<b class='flag-5'>表面</b><b class='flag-5'>粗糙度</b>优化

    粗糙度的滤波值是怎么设置的?

    引言 在表面粗糙度测量中,滤波处理是分离表面轮廓中不同频率成分的关键步骤,而滤波值的设置直接影响粗糙度参数计算的准确性。合理设置滤波值,能够有效剔除
    的头像 发表于 07-03 09:46 ?250次阅读
    <b class='flag-5'>粗糙度</b>的滤波值是怎么设置的?

    大量程粗糙度轮廓仪适用于哪些材质和表面

    大量程粗糙度轮廓仪适用于多种材质和表面,无论是金属、塑料、陶瓷、玻璃还是涂层材料,都能够通过该仪器进行精确的表面粗糙度检测,从而确保产品的质
    发表于 05-21 14:49 ?0次下载

    大量程粗糙度轮廓仪适用于哪些材质和表面

    大量程粗糙度轮廓仪是一种能够在广泛的测量范围内对工件表面进行粗糙度分析的精密仪器。它通常采用接触式或非接触式传感器,通过对工件表面的扫描,捕捉表面
    的头像 发表于 05-21 14:45 ?355次阅读
    大量程<b class='flag-5'>粗糙度</b>轮廓仪适用于哪些材质和<b class='flag-5'>表面</b>?

    优可测白光干涉仪AM系列:量化管控纳米级粗糙度,位移传感器关键零件寿命提升50%

    位移传感器模组的编码盘,其粗糙度及码道的刻蚀深度和宽度,会对性能带来关键性影响。优可测白光干涉仪精确测量表面粗糙度以及刻蚀形貌尺寸,精度最高可达亚纳米级,解决产品工艺特性以及量化管控。
    的头像 发表于 05-21 13:00 ?526次阅读
    优可测白光干涉仪AM系列:量化管控纳米级<b class='flag-5'>粗糙度</b>,位移传感器关键零件寿命提升50%

    白光干涉仪:表面形貌分析,如何区分波纹粗糙度

    表面形貌分析中,波纹粗糙度是两种关键特征。通过滤波技术设置截止波长,可将两者分离。分离后,通过计算参数或FFT验证效果。这种分析有助于优化加工工艺、提升产品性能和质量。
    的头像 发表于 03-19 18:04 ?639次阅读
    白光干涉仪:<b class='flag-5'>表面</b>形貌分析,如何区分波纹<b class='flag-5'>度</b>与<b class='flag-5'>粗糙度</b>?

    氧化镓衬底表面粗糙度和三维形貌,优可测白光干涉仪检测时长缩短至秒级!

    传统AFM检测氧化镓表面三维形貌和粗糙度需要20分钟左右,优可测白光干涉仪检测方案仅需3秒,百倍提升检测效率!
    的头像 发表于 02-08 17:33 ?630次阅读
    氧化镓衬底<b class='flag-5'>表面</b><b class='flag-5'>粗糙度</b>和三维形貌,优可测白光干涉仪检测时长缩短至秒级!

    粗糙度轮廓仪的测量原理是怎样的

    移动,这种位移变化通过传感器转化为电信号。电信号经过放大、运算处理等步骤后,再转换成数字信号储存在计算机系统中。计算机对原始表面轮廓进行数字滤波,分离掉表面粗糙度成分
    的头像 发表于 11-13 14:55 ?967次阅读
    <b class='flag-5'>粗糙度</b>轮廓仪的测量原理是怎样的

    使用SIDesigner进行铜箔粗糙度建模及仿真分析

    高速设计需要考虑很多因素,比如板材、叠层、传输线、串扰控制等等,在高带宽场景中铜箔粗糙度是影响SI性能的关键因素之一。
    的头像 发表于 10-22 10:11 ?2470次阅读

    测量表面粗糙度:白光共聚焦显微镜的优点

    表面粗糙度作为衡量表面质量的关键指标之一,其测量的准确性和可靠性直接影响到产品的性能和质量。在当今科技飞速发展的时代,随着半导体制造、3C电子、光学加工等行业的不断发展,对表面
    的头像 发表于 10-12 14:47 ?1980次阅读
    测量<b class='flag-5'>表面</b><b class='flag-5'>粗糙度</b>:白光共聚焦显微镜的优点