0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

用人工神经网络控制真实大脑,MIT的科学家做到了

mK5P_AItists ? 来源:工程师李察 ? 2019-05-11 16:45 ? 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

三位研究者分别是 MIT 大脑与行为科学系主任 James DiCarlo、MIT 博士后 Pouya Bashivan 和 Kohitij Kar。相关论文发表在 5 月 2 日 Science 的网络版上。

论文链接:http s://www.biorxiv.org/content/10.1101/461525v1

研究人员表示,他们最初的目的是探索大脑如何感知和理解视觉世界。为此,他们创建了可以模拟大脑视觉皮层的计算模型。但仅仅创建模型是不够的,他们还想知道自己创建的模型是否准确。

于是,他们尝试用创建的模型控制神经元,测试他们的模型能否精确地控制单个神经元以及视觉神经网络中的神经元群。这是一项非常严格的测试。

他们将自己创建的计算模型称为「controller」,用这一模型控制另一个系统的输出,也就是实验中猴子大脑的神经活动。

首先,他们利用从该计算模型中获得的信息创建了特定的图像。这些图像与自然图像存在很大的差别,如下图所示。

研究人员利用深度神经网络模型合成的图像。

研究人员将这些图像展示给实验中的猴子,观察图像是否可以强烈激活他们选择的特定脑神经元。

实验结果表明,这些图像可以强烈激活他们选择的特定脑神经元。也就是说,他们利用自己创建的人工神经系统成功控制了真实神经系统的活动。

实验步骤

过去几年里,DiCarlo 及其他人开发出了基于人工神经网络的视觉系统模型。每个网络开始时具有一个包含模型神经元或节点的任意架构,这些不同强度(也可称权重)的神经元或节点彼此之间可以相互连接。

随后,研究者在一个拥有 100 多万张图像的库中训练这些模型。当研究者向模型展示每张图像,并给图像中最突出的物体添加标签(如飞机或椅子等)时,模型通过改变其连接强度来学习识别物体。

虽然很难准确确定模型如何实现这种识别,但 DiCarlo 及其同事之前已经证实了这些模型中的「神经元」产生的活动模式与动物视觉皮层对同一图像的反应非常相似。

研究者设计了几个闭环的神经生理学实验:在将模型神经元与每个记录的大脑神经位点匹配之后,他们使用模型合成了全新的「controller」图像。接下来,他们将这些图像展示给每个目标,以测试模型控制目标神经元的能力。

在一项测试中,研究人员让模型尝试控制每个大脑神经元,使其激活程度超过其平时观察到的最大激活水平。他们发现,模型生成的合成刺激成功地驱动 68% 的神经位点超出了它们的自然观察激活水平。

在一项更加严格的测试中,研究人员试图生成能够最大限度地控制一个神经元的图像,同时保持附近神经元的活跃度非常低,这是一项更加困难的任务。

但这没有难倒他们。对于测试的大多数神经元,研究人员能够增强目标神经元的活跃度,而周围神经元的活跃度几乎没有增加。

接下来,研究者利用这些非自然合成的 controller 图像来测试模型预测大脑反应的能力是否可以适用于这些全新的图像。结果表明,模型非常准确,预测到了 54% 的图像诱发的大脑反应模式,不过这还不够完美。

「此前,模型已经能够预测神经对其他未见过的刺激的反应,」Bashivan 表示。「这里主要的不同之处在于我们又往前走了一步,即利用模型控制神经元达到我们想要的状态。」

为了达到这一目标,研究人员首先在计算模型中创建了大脑 V4 视觉区域神经元到节点的一对一映射。他们通过向动物和模型展示图像,并比较它们对相同图像的反应来实现这一目的。V4 区有数百万个神经元,但在这项研究中,研究人员每次只创建 5~40 个神经元的映射。

「一旦搞清楚了每个神经元的分工,模型就能对神经元做出预测。」DiCarlo 表示。

研究人员开始研究能否利用这些预测来控制视觉皮层单个神经元的活动。他们用到的第一种控制叫做「stretching」,包括展示一幅将会控制某个特定神经元的图像。

研究人员发现,当他们向动物展示这些由模型创建的非常规「合成」图像时,目标神经元的确做出了预期的反应。平均而言,这些神经元对合成图像的反应要比它们看到用于训练模型的自然图像时活跃 40% 左右。这种控制方法也是首创性的。

「实验数据收集和计算建模分开进行是神经科学的一个普遍趋势,这使得模型验证非常少,因此缺乏可量化的进展。我们的工作使这一『闭环』方法」重获生机,将模型预测和神经测量都包含进来,这些对成功构建和测试最接近大脑的模型至关重要,」Kar 表示。

用人工神经网络控制真实大脑,MIT的科学家做到了

图 1:合成步骤概览。A) 两个受测控制场景的图示。C) 神经控制实验具体步骤。D) 猴子 M(黑色)、N(红色)和 S(蓝色)的神经位点感受野。其中 C 展示了神经控制实验的四个步骤:在大量标注自然图像上训练神经网络,以优化其参数,然后保持不变;将 ANN「神经元」映射到每个记录的 V4 神经位点;使用得到的可微模型合成「controller」图像,用于 single-site 或群体控制;将这些图像指定的发光模式应用于受试者的视网膜,衡量神经位点的控制水平。

证明用人工神经网络理解真实神经网络的可行性

实验结果表明,当前这些模型与大脑非常类似,可用于控制动物的脑状态。James DiCarlo 称,该研究还有助于确定这些模型的有用性,而这引起了它们是否可以精确模拟视觉皮层工作的激烈争论。

他还说道:「人们对这些模型是否可以理解视觉系统提出了质疑。抛却学术意义上的争论,我们证实了这些模型已经足够强大,能够促成一项重要的新应用。无论你是否理解该模型的工作原理,从这层意义上来说已经很有用了。」

「他们做到的这一点真的很棒。就好像那副理想的图像突然抓住了那个神经元的注意力。那个神经元突然找到了它一直以来寻找的刺激,」匹兹堡大学生物工程学副教授 Aaron Batista 表示。「这个想法非常了不起,将其变为现实更加了不起。*这可能是用人工神经网络理解真实神经网络迄今为止最有力的证明*。」

研究成果有望用于治疗抑郁症

研究者表示,对于那些想要研究不同神经元如何相互作用和如何连接的神经科学家来说,这种控制可能有用。在遥远的未来,这种方法有可能在治疗抑郁症等情绪障碍中发挥作用。目前,研究者正在研究将他们的模型扩展至为杏仁体提供养料的颞下皮层,而杏仁体又涉及到情绪处理。

Bashivan 表示:「如果我们有一个优秀的神经元模型,它可以体验情绪或引发不同种类的失调,我们就可以使用该模型控制神经元,来帮助缓解失调状况。」

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 网络
    +关注

    关注

    14

    文章

    7895

    浏览量

    91376
  • 计算
    +关注

    关注

    2

    文章

    454

    浏览量

    39434
  • 神经
    +关注

    关注

    0

    文章

    46

    浏览量

    12693

原文标题:用人工神经网络控制真实大脑,MIT的科学家做到了

文章出处:【微信号:AItists,微信公众号:人工智能学家】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    BP神经网络与卷积神经网络的比较

    BP神经网络与卷积神经网络在多个方面存在显著差异,以下是对两者的比较: 一、结构特点 BP神经网络 : BP神经网络是一种多层的前馈神经网络
    的头像 发表于 02-12 15:53 ?857次阅读

    BP神经网络的优缺点分析

    自学习能力 : BP神经网络能够通过训练数据自动调整网络参数,实现对输入数据的分类、回归等任务,无需人工进行复杂的特征工程。 泛化能力强 : BP神经网络通过训练数据学习到的特征表示
    的头像 发表于 02-12 15:36 ?1087次阅读

    什么是BP神经网络的反向传播算法

    神经网络(即反向传播神经网络)的核心,它建立在梯度下降法的基础上,是一种适合于多层神经元网络的学习算法。该算法通过计算每层网络的误差,并将这些误差反向传播到前一层,从而调整权重,使得
    的头像 发表于 02-12 15:18 ?920次阅读

    BP神经网络与深度学习的关系

    BP神经网络与深度学习之间存在着密切的关系,以下是对它们之间关系的介绍: 一、BP神经网络的基本概念 BP神经网络,即反向传播神经网络(Backpropagation Neural N
    的头像 发表于 02-12 15:15 ?1017次阅读

    人工神经网络的原理和多种神经网络架构方法

    所拟合的数学模型的形式受到大脑神经元的连接和行为的启发,最初是为了研究大脑功能而设计的。然而,数据科学中常用的神经网络作为
    的头像 发表于 01-09 10:24 ?1461次阅读
    <b class='flag-5'>人工</b><b class='flag-5'>神经网络</b>的原理和多种<b class='flag-5'>神经网络</b>架构方法

    卷积神经网络与传统神经网络的比较

    在深度学习领域,神经网络模型被广泛应用于各种任务,如图像识别、自然语言处理和游戏智能等。其中,卷积神经网络(CNNs)和传统神经网络是两种常见的模型。 1. 结构差异 1.1 传统神经网络
    的头像 发表于 11-15 14:53 ?2078次阅读

    RNN模型与传统神经网络的区别

    传统神经网络(前馈神经网络) 2.1 结构 传统神经网络,通常指的是前馈神经网络(Feedforward Neural Networks, FNN),是一种最简单的
    的头像 发表于 11-15 09:42 ?1310次阅读

    LSTM神经网络的结构与工作机制

    LSTM(Long Short-Term Memory,长短期记忆)神经网络是一种特殊的循环神经网络(RNN),设计用于解决长期依赖问题,特别是在处理时间序列数据时表现出色。以下是LSTM神经网络
    的头像 发表于 11-13 10:05 ?1783次阅读

    LSTM神经网络在语音识别中的应用实例

    语音识别技术是人工智能领域的一个重要分支,它使计算机能够理解和处理人类语言。随着深度学习技术的发展,特别是长短期记忆(LSTM)神经网络的引入,语音识别的准确性和效率得到了显著提升。 LSTM
    的头像 发表于 11-13 10:03 ?2031次阅读

    Moku人工神经网络101

    不熟悉神经网络的基础知识,或者想了解神经网络如何优化加速实验研究,请继续阅读,探索基于深度学习的现代智能化实验的广阔应用前景。什么是神经网络?“人工
    的头像 发表于 11-01 08:06 ?741次阅读
    Moku<b class='flag-5'>人工</b><b class='flag-5'>神经网络</b>101

    关于卷积神经网络,这些概念你厘清了么~

    随着人工智能(AI)技术的快速发展,AI可以越来越多地支持以前无法实现或者难以实现的应用。本文基于此解释了 卷积神经网络 (CNN)及其对人工智能和机器学习的意义。CNN是一种能够从复杂数据中提
    发表于 10-24 13:56

    AI for Science:人工智能驱动科学创新》第4章-AI与生命科学读后感

    。 4. 对未来生命科学发展的展望 在阅读这一章后,我对未来生命科学的发展充满了期待。我相信,在人工智能技术的推动下,生命科学将取得更加显著的进展。例如,在药物研发领域,AI技术将帮助
    发表于 10-14 09:21

    《AI for Science:人工智能驱动科学创新》第二章AI for Science的技术支撑学习心得

    人工智能在科学研究中的核心技术,包括机器学习、深度学习、神经网络等。这些技术构成了AI for Science的基石,使得AI能够处理和分析复杂的数据集,从而发现隐藏在数据中的模式和规律。 2. 高性能
    发表于 10-14 09:16

    《AI for Science:人工智能驱动科学创新》第一章人工智能驱动的科学创新学习心得

    的效率,还为科学研究提供了前所未有的洞察力和精确度。例如,在生物学领域,AI能够帮助科学家快速识别基因序列中的关键变异,加速新药研发进程。 2. 跨学科融合的新范式 书中强调,人工智能的应用促进了多个
    发表于 10-14 09:12

    matlab 神经网络 数学建模数值分析

    matlab神经网络 数学建模数值分析 精通的可以讨论下
    发表于 09-18 15:14