0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

人工神经网络的定义

工程师 ? 来源:未知 ? 作者:姚远香 ? 2018-11-24 09:21 ? 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

人工神经网络的定义

人工神经网络( Artificial Neural Networks, 简写为ANNs)也简称为神经网络或称作连接模型,是对人脑或自然神经网络若干基本特性的抽象和模拟。人工神经网络以对大脑的生理研究成果为基础的,其目的在于模拟大脑的某些机理与机制,实现某个方面的功能。国际著名的神经网络研究专家,第一家神经计算机公司的创立者与领导人Hecht Nielsen给人工神经网络下的定义就是:“人工神经网络是由人工建立的以有向图为拓扑结构的动态系统,它通过对连续或断续的输入作状态相应而进行信息处理” 这一定义是恰当的。

人工神经网络的研究,可以追溯到 1957年Rosenblatt提出的感知器模型(Perceptron) 。它几乎与人工智能——AI同时起步,但30余年来却并未取得人工智能那样巨大的成功,中间经历了一段长时间的萧条。直到80年代,获得了关于人工神经网络切实可行的算法,以及以Von Neumann体系为依托的传统算法在知识处理方面日益显露出其力不从心后,人们才重新对人工神经网络发生了兴趣,导致神经网络的复兴。 目前在神经网络研究方法上已形成多个流派,最富有成果的研究工作包括:多层网络BP算法,Hopfield网络模型,自适应共振理论,自组织特征映射理论等。人工神经网络是在现代神经科学的基础上提出来的。它虽然反映了人脑功能的基本特征,但远不是自然神经网络的逼真描写,而只是它的某种简化抽象和模拟。

人工神经网络的特点

(1)可以充分逼近任意复杂的非线性关系;

(2)所有定量或定性的信息都等势分布贮存于网络内的各神经元,故有很强的鲁棒性和容错性;

(3)采用并行分布处理方法,使得快速进行大量运算成为可能;

(4)可学习和自适应不知道或不确定的系统;

(5)能够同时处理定量、定性知识。

人工神经网络主要研究方向

神经网络的研究可以分为理论研究和应用研究两大方面。理论研究可分为以下两类:

1)利用神经生理与认知科学研究人类思维以及智能机理。

2)利用神经基础理论的研究成果,用数理方法探索功能更加完善、性能更加优越的神经网络模型,深入研究网络算法和性能, 如:稳定性、收敛性、容错性、鲁棒性等;开发新的网络数理理论,如:神经网络动力学、非线性神经场等。

应用研究可分为以下两类:

1)神经网络的软件模拟和硬件实现的研究。

2)神经网络在各个领域中应用的研究。这些领域主要包括:模式识别、信号处理、知识工程、专家系统、优化组合、机器人控制等。 随着神经网络理论本身以及相关理论、相关技术的不断发展,神经网络的应用定将更加深入。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4814

    浏览量

    104075
  • 人工神经网络

    关注

    1

    文章

    120

    浏览量

    14930
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    BP神经网络与卷积神经网络的比较

    BP神经网络与卷积神经网络在多个方面存在显著差异,以下是对两者的比较: 一、结构特点 BP神经网络 : BP神经网络是一种多层的前馈神经网络
    的头像 发表于 02-12 15:53 ?728次阅读

    BP神经网络的优缺点分析

    自学习能力 : BP神经网络能够通过训练数据自动调整网络参数,实现对输入数据的分类、回归等任务,无需人工进行复杂的特征工程。 泛化能力强 : BP神经网络通过训练数据学习到的特征表示
    的头像 发表于 02-12 15:36 ?988次阅读

    什么是BP神经网络的反向传播算法

    BP神经网络的反向传播算法(Backpropagation Algorithm)是一种用于训练神经网络的有效方法。以下是关于BP神经网络的反向传播算法的介绍: 一、基本概念 反向传播算法是BP
    的头像 发表于 02-12 15:18 ?822次阅读

    BP神经网络与深度学习的关系

    ),是一种多层前馈神经网络,它通过反向传播算法进行训练。BP神经网络由输入层、一个或多个隐藏层和输出层组成,通过逐层递减的方式调整网络权重,目的是最小化网络的输出误差。 二、深度学习的
    的头像 发表于 02-12 15:15 ?916次阅读

    深度学习入门:简单神经网络的构建与实现

    神经网络。 首先,导入必要的库: 收起 python ? import numpy as np ? 定义激活函数 Sigmoid: 收起 python ? def sigmoid(x): return 1
    的头像 发表于 01-23 13:52 ?558次阅读

    人工神经网络的原理和多种神经网络架构方法

    在上一篇文章中,我们介绍了传统机器学习的基础知识和多种算法。在本文中,我们会介绍人工神经网络的原理和多种神经网络架构方法,供各位老师选择。 01 人工
    的头像 发表于 01-09 10:24 ?1302次阅读
    <b class='flag-5'>人工</b><b class='flag-5'>神经网络</b>的原理和多种<b class='flag-5'>神经网络</b>架构方法

    卷积神经网络的实现工具与框架

    : TensorFlow是由Google Brain团队开发的开源机器学习框架,它支持多种深度学习模型的构建和训练,包括卷积神经网络。TensorFlow以其灵活性和可扩展性而闻名,适用于研究和生产环境。 特点: 灵活性: TensorFlow提供了丰富的API,允许用户自定义
    的头像 发表于 11-15 15:20 ?706次阅读

    卷积神经网络与传统神经网络的比较

    在深度学习领域,神经网络模型被广泛应用于各种任务,如图像识别、自然语言处理和游戏智能等。其中,卷积神经网络(CNNs)和传统神经网络是两种常见的模型。 1. 结构差异 1.1 传统神经网络
    的头像 发表于 11-15 14:53 ?1945次阅读

    卷积神经网络的基本原理与算法

    ),是深度学习的代表算法之一。 一、基本原理 卷积运算 卷积运算是卷积神经网络的核心,用于提取图像中的局部特征。 定义卷积核:卷积核是一个小的矩阵,用于在输入图像上滑动,提取局部特征。 滑动窗口:将卷积核在输入图像上滑动,每次滑动一个像素点。 计算卷积:将卷积核与输入图像
    的头像 发表于 11-15 14:47 ?1846次阅读

    RNN模型与传统神经网络的区别

    传统神经网络(前馈神经网络) 2.1 结构 传统神经网络,通常指的是前馈神经网络(Feedforward Neural Networks, FNN),是一种最简单的
    的头像 发表于 11-15 09:42 ?1184次阅读

    LSTM神经网络的结构与工作机制

    LSTM(Long Short-Term Memory,长短期记忆)神经网络是一种特殊的循环神经网络(RNN),设计用于解决长期依赖问题,特别是在处理时间序列数据时表现出色。以下是LSTM神经网络
    的头像 发表于 11-13 10:05 ?1697次阅读

    LSTM神经网络的基本原理 如何实现LSTM神经网络

    LSTM(长短期记忆)神经网络是一种特殊的循环神经网络(RNN),它能够学习长期依赖信息。在处理序列数据时,如时间序列分析、自然语言处理等,LSTM因其能够有效地捕捉时间序列中的长期依赖关系而受到
    的头像 发表于 11-13 09:53 ?1654次阅读

    Moku人工神经网络101

    不熟悉神经网络的基础知识,或者想了解神经网络如何优化加速实验研究,请继续阅读,探索基于深度学习的现代智能化实验的广阔应用前景。什么是神经网络?“人工
    的头像 发表于 11-01 08:06 ?710次阅读
    Moku<b class='flag-5'>人工</b><b class='flag-5'>神经网络</b>101

    关于卷积神经网络,这些概念你厘清了么~

    随着人工智能(AI)技术的快速发展,AI可以越来越多地支持以前无法实现或者难以实现的应用。本文基于此解释了 卷积神经网络 (CNN)及其对人工智能和机器学习的意义。CNN是一种能够从复杂数据中提
    发表于 10-24 13:56

    matlab 神经网络 数学建模数值分析

    matlab神经网络 数学建模数值分析 精通的可以讨论下
    发表于 09-18 15:14