0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

通过回归神经网络可以描绘出人类神经元图谱

EdXK_AI_News ? 来源:未知 ? 作者:工程师郭婷 ? 2018-08-05 11:21 ? 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

谷歌公司和德国马普学会的研究人员联合开发出了一种回归神经网络,能够描绘出人类大脑的神经元图谱。

刻画神经系统中的生物网络结构是一个被称为联接组学(connectomics)的研究领域,它是计算密集型的。人的大脑大约包含由100万亿个神经突触连接起来的860亿个神经元,如果对1立方毫米的人脑组织进行成像,可以产生超过1000TB的数据。

幸运的是,人工智能可以提供帮助。

Google和Max Planck神经生物学研究所的科学家在《自然方法》杂志上发表了一篇论文(高精度自动重建神经元与洪水填充网络),介绍了一种循环神经网络—一种常用于手写和语音识别机器学习算法—已经针对联通组学的分析工作进行了专门优化。

最先将机器学习用于联通组学的并不是谷歌的研究人员——2018年3月,英特尔与麻省理工学院的计算机科学和人工智能实验室合作开发了“下一代”脑图像处理流水线。但谷歌声称他们模型的准确性比以前的深度学习技术提高了“一个数量级”。

研究人员采用了一种边缘检测算法来识别神经突起的边界(生长于神经元体上的结构),结合反馈卷积神经网络—递归神经网络的一个子类别—将扫描图像中能够描述神经元的像素组合在一起并进行突出显示。

为了保持准确性,该团队提出了一个度量值“预期运行长度”(expected run length,ERL)。如果给定大脑3D图像中的一个带有随机神经元的随机点,这个度量值能够测量算法在不出错的情况下跟踪神经元的距离。该研究小组报告说,在对斑胸草雀的大脑进行的一次100万立方微米的扫描中,该模型的表现比以前的算法“好得多”。

谷歌的研究人员和论文的主要作者Viren Jain与Michal Januszewski在一篇博文中写道:“通过将这些自动化结果与修复剩余错误所需的少量额外人力相结合,Max Planck研究所的研究人员现在能够研究鸣鸟的联接组(connectome),以获得对斑胸草雀的歌唱机理的新见解,并测试与这种鸟如何学习歌唱相关的理论。”

除了论文之外,该团队还在Github上发布了其模型的TensorFlow代码,以及用于可视化数据集和改进重建结果的WebGL 3D软件。他们计划在未来对该系统做进一步完善,目的是实现突触解析过程的完全自动化,并“为Max Planck研究所和其他地方的项目做出贡献。”

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 谷歌
    +关注

    关注

    27

    文章

    6233

    浏览量

    108416
  • 人工智能
    +关注

    关注

    1809

    文章

    49164

    浏览量

    250757
  • 神经元
    +关注

    关注

    1

    文章

    368

    浏览量

    18879

原文标题:研究人员开发出可描绘大脑神经元的人工智能

文章出处:【微信号:AI_News,微信公众号:人工智能快报】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    无刷直流电机单神经元自适应智能控制系统

    摘要:针对无刷直流电机(BLDCM)设计了一种可在线学习的单神经元自适应比例-积分-微分(PID)智能控制器,通过有监督的 Hebb学习规则调整权值,每次采样根据反馈误差对神经元权值进行调整,以实现
    发表于 06-26 13:36

    无刷直流电机单神经元PI控制器的设计

    刷直流电机单神经元PI控制器的设计.pdf 【免责声明】本文系网络转载,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请第一时间告知,删除内容,谢谢!
    发表于 06-26 13:34

    BP神经网络网络结构设计原则

    ,仅作为数据输入的接口。输入层的神经元个数通常与输入数据的特征数量相对应。 隐藏层 :对输入信号进行非线性变换,是神经网络的核心部分,负责学习输入与输出之间的复杂映射关系。隐藏层可以有一层或多层,层数和
    的头像 发表于 02-12 16:41 ?787次阅读

    BP神经网络与卷积神经网络的比较

    多层。 每一层都由若干个神经元构成,神经元之间通过权重连接。信号在神经网络中是前向传播的,而误差是反向传播的。 卷积神经网络(CNN) :
    的头像 发表于 02-12 15:53 ?735次阅读

    BP神经网络的优缺点分析

    自学习能力 : BP神经网络能够通过训练数据自动调整网络参数,实现对输入数据的分类、回归等任务,无需人工进行复杂的特征工程。 泛化能力强 : BP
    的头像 发表于 02-12 15:36 ?989次阅读

    什么是BP神经网络的反向传播算法

    神经网络(即反向传播神经网络)的核心,它建立在梯度下降法的基础上,是一种适合于多层神经元网络的学习算法。该算法通过计算每层网络的误差,并将这
    的头像 发表于 02-12 15:18 ?822次阅读

    BP神经网络的基本原理

    输入层、隐藏层和输出层组成。其中,输入层负责接收外部输入数据,这些数据随后被传递到隐藏层。隐藏层是BP神经网络的核心部分,它可以通过一层或多层神经元对输入数据进行加权求和,并
    的头像 发表于 02-12 15:13 ?949次阅读

    如何训练BP神经网络模型

    BP(Back Propagation)神经网络是一种经典的人工神经网络模型,其训练过程主要分为两个阶段:前向传播和反向传播。以下是训练BP神经网络模型的步骤: 一、前向传播 前向传播是信号在
    的头像 发表于 02-12 15:10 ?978次阅读

    深度学习入门:简单神经网络的构建与实现

    深度学习中,神经网络是核心模型。今天我们用 Python 和 NumPy 构建一个简单的神经网络神经网络由多个神经元组成,神经元之间
    的头像 发表于 01-23 13:52 ?564次阅读

    人工神经网络的原理和多种神经网络架构方法

    所拟合的数学模型的形式受到大脑中神经元的连接和行为的启发,最初是为了研究大脑功能而设计的。然而,数据科学中常用的神经网络作为大脑模型已经过时,现在它们只是能够在某些应用中提供最先进性能的机器学习模型。近年来,由于
    的头像 发表于 01-09 10:24 ?1313次阅读
    人工<b class='flag-5'>神经网络</b>的原理和多种<b class='flag-5'>神经网络</b>架构方法

    卷积神经网络与传统神经网络的比较

    神经网络,也称为全连接神经网络(Fully Connected Neural Networks,FCNs),其特点是每一层的每个神经元都与下一层的所有神经元相连。这种结构简单直观,但在
    的头像 发表于 11-15 14:53 ?1946次阅读

    RNN模型与传统神经网络的区别

    传统神经网络(前馈神经网络) 2.1 结构 传统神经网络,通常指的是前馈神经网络(Feedforward Neural Networks, FNN),是一种最简单的人工
    的头像 发表于 11-15 09:42 ?1187次阅读

    LSTM神经网络的结构与工作机制

    的结构与工作机制的介绍: 一、LSTM神经网络的结构 LSTM神经网络的结构主要包括以下几个部分: 记忆单元(Memory Cell) : 记忆单元是LSTM网络的核心,负责在整个序列处理过程中保持和更新长期依赖信息。 它主要由
    的头像 发表于 11-13 10:05 ?1701次阅读

    关于卷积神经网络,这些概念你厘清了么~

    可以不局限于已知的训练图像开展识别。该神经网络需要映射到MCU中。 5、AI的模式识别内部到底是什么? AI的神经元网络类似于人脑的生物神经元网络。一个
    发表于 10-24 13:56

    matlab 神经网络 数学建模数值分析

    matlab神经网络 数学建模数值分析 精通的可以讨论下
    发表于 09-18 15:14