0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

IBM研发比纸还薄一万倍的柔性纳米级电路

454398 ? 来源:互联网 ? 作者:秩名 ? 2013-01-17 14:23 ? 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

近日IBM的研究人员研发了一款高性能的纳米级电路,整体厚度非常薄,可以折叠弯曲来适应不同的设备需要。依赖这款电路提供的强大功率,流线型电脑和可植入型医疗设备在未来都可能实现。

Stephen Bedell和Davood Shahrjerdi是微软IBM托马斯?J?沃森研究中心的两位研究员,就是他们研发出了这款纳米级电路。这款柔性纳米级电路的厚度比一张普通的纸还要薄一万倍,相当于从硅晶片上刮剃下来后粘贴到一片塑料上。这项技术发明不仅是小型和便携式电脑领域的重大突破,更是能在不提供更大电力资源的前提下提高现有设备的功率。

这款柔性电路非常轻薄,因此可以大规模的叠加起来使用,从而为电脑提供空前的功率Stephen Bedell表示,可以将 100亿个晶体管放在这样的薄片上,只需要0.6伏特电压来启动。强大、高效、柔性、轻薄,以上特点这项技术都可以完美实现,可以为未来产品发展创造无限的可能,比如触控屏幕、锌电池等。目前这款柔性电路的曲率半径只有6nm,因此适用于可折叠手机和宇宙飞船中的超轻电脑有一点限制。因此,IBM应该会继续研发以期能将这款产品级别提升一个档次。除了上述用途之外,这项技术移植到固态照明上。通过利用柔性纳米级电路替换低效的蓝宝石衬底,灯泡可以变得更小更环保。

现有的电路体积庞大且僵硬难以变形,因此下一代柔性纳米级电路技术必然会在汽车、医疗和消费性电子设备领域大有作为。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • IBM
    IBM
    +关注

    关注

    3

    文章

    1828

    浏览量

    75931
  • 柔性电路
    +关注

    关注

    0

    文章

    53

    浏览量

    13108
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    触针式轮廓仪 | 台阶仪 | 纳米级多台阶高度的精准测量

    纳米级三台阶高度样本(8nm/18nm/26nm)的高精度测量。并应用于薄膜沉积速率的计算与验证,结果显示轮廓仪与光谱椭偏仪的沉积速率测量结果一致。1触针轮廓仪测量f
    的头像 发表于 07-22 09:52 ?113次阅读
    触针式轮廓仪 | 台阶仪 | <b class='flag-5'>纳米级</b>多台阶高度的精准测量

    多摩川17位绝对式编码器实现伺服系统纳米级定位精度

    在工业自动化的浪潮中,伺服系统的定位精度就像是一把精准的手术刀,决定着生产的质量和效率。而多摩川 17 位绝对式编码器,无疑是这把手术刀上最为锋利的刃口,它实现了伺服系统纳米级的定位精度,为工业生产带来了质的飞跃
    的头像 发表于 07-16 16:28 ?256次阅读
    多摩川17位绝对式编码器实现伺服系统<b class='flag-5'>纳米级</b>定位精度

    Keithley 2450数字源表纳米级材料测试的精密利器

    、操作复杂性高等问题亟待解决。美国吉时利(Keithley)推出的2450数字源表,凭借高精度、多功能及智能化设计,为纳米级材料测试提供了突破性解决方案,成为科研与工业领域的精密利器。 ? 一、核心技术特性:精密测量的基石
    的头像 发表于 07-09 14:40 ?149次阅读
    Keithley 2450数字源表<b class='flag-5'>纳米级</b>材料测试的精密利器

    精密传感技术驱动半导体未来:明治传感器在CMP/量测/减机的应用

    化学机械抛光设备(CMP)、量测设备与减机的关键工位,为芯片良率与生产效率提供底层支撑。从纳米级的精度控制,到全流程的质量守护,本文将通过15大经典应用场景,揭示明治
    的头像 发表于 06-17 07:33 ?414次阅读
    精密传感技术驱动半导体未来:明治传感器在CMP/量测/减<b class='flag-5'>薄</b>机的应用

    压电纳米定位系统搭档金刚石色心-在纳米尺度上捕捉量子世界的奥秘

    在量子计算、生物传感、精密测量等前沿领域,金刚石中的氮-空位(NV)色心正成为颠覆性技术的核心材料,其独特的量子特性为科技突破提供了无限可能,更因其卓越的性质和广泛的应用而成为纳米级研究的有力工具
    的头像 发表于 06-05 09:30 ?292次阅读
    压电<b class='flag-5'>纳米</b>定位系统搭档金刚石色心-在<b class='flag-5'>纳米</b>尺度上捕捉量子世界的奥秘

    头发丝灵敏?压电陶瓷如何让加速度计捕捉纳米级震动?

    电源电路
    杨明远
    发布于 :2025年06月05日 09:20:53

    滚珠导轨:电子制造“纳米级”精度的运动基石

    在电子制造与半导体设备追求“微米工艺、纳米级控制”的赛道上,滚珠导轨凭借高刚性、低摩擦与高洁净特性,成为精密运动系统的核心载体。
    的头像 发表于 05-29 17:46 ?255次阅读
    滚珠导轨:电子制造“<b class='flag-5'>纳米级</b>”精度的运动基石

    MT6825超高频角度编码机制及深空探测器极端工况纳米级角分辨

    在深空探测领域,高精度角度测量技术是保障探测器姿态控制、目标定位和科学观测的核心支撑。MT6825超高频角度编码机制作为我国自主研发纳米级角分辨技术,通过创新性地融合磁阻效应与数字信号处理算法,在
    的头像 发表于 05-22 15:48 ?291次阅读
    MT6825超高频角度编码机制及深空探测器极端工况<b class='flag-5'>纳米级</b>角分辨

    优可测白光干涉仪AM系列:量化管控纳米级粗糙度,位移传感器关键零件寿命提升50%

    位移传感器模组的编码盘,其粗糙度及码道的刻蚀深度和宽度,会对性能带来关键性影响。优可测白光干涉仪精确测量表面粗糙度以及刻蚀形貌尺寸,精度最高可达亚纳米级,解决产品工艺特性以及量化管控。
    的头像 发表于 05-21 13:00 ?470次阅读
    优可测白光干涉仪AM系列:量化管控<b class='flag-5'>纳米级</b>粗糙度,位移传感器关键零件寿命提升50%

    纳米级形貌快速测量,优可测白光干涉仪助力摩擦磨损学科发展

    研究摩擦学,能带来什么价值?从摩擦磨损到亚纳米级精度,白光干涉仪如何参与摩擦学发展?
    的头像 发表于 04-21 12:02 ?695次阅读
    <b class='flag-5'>纳米级</b>形貌快速测量,优可测白光干涉仪助力摩擦磨损学科发展

    一文解析纳米级针孔缺陷的性能研究

    在冷凝过程中起泡已被认为是与失效相关的主要机制之一。然而,关于起泡形成的来源存在着分歧。此外,人们缺乏对促进蒸汽通过疏水薄膜渗透途径的物理缺陷或针孔的了解。这些针孔控制着在疏水聚合物和金属基板之间的界面上的水泡的成核。在这
    的头像 发表于 12-03 09:26 ?734次阅读
    一文解析<b class='flag-5'>纳米级</b>针孔缺陷的性能研究

    安泰功率放大器如何帮助纳米材料领域进行创新研发

    纳米材料是指具有纳米级尺寸(1-100nm)的物质,由于其具有独特的物理、化学和生物性质,因此在过去的几十年中得到了广泛的研究和应用。在医学领域,纳米材料的应用也取得了显著的进展,为疾病诊断、治疗
    的头像 发表于 11-15 10:46 ?466次阅读
    安泰功率放大器如何帮助<b class='flag-5'>纳米</b>材料领域进行创新<b class='flag-5'>研发</b>

    麻省理工学院研发全新纳米级3D晶体管,突破性能极限

    11月7日,有报道称,美国麻省理工学院的研究团队利用超薄半导体材料,成功开发出一种前所未有的纳米级3D晶体管。这款晶体管被誉为迄今为止最小的3D晶体管,其性能与功能不仅与现有的硅基晶体管相当,甚至在某些方面超越了后者。
    的头像 发表于 11-07 13:43 ?958次阅读

    SK海力士开发出第六代10纳米级DDR5 DRAM

    SK海力士宣布了一项重大技术突破,成功开发出全球首款采用第六代10纳米级(1c)工艺的16Gb DDR5 DRAM。这一里程碑式的成就标志着SK海力士在半导体存储技术领域的领先地位。
    的头像 发表于 08-29 16:39 ?996次阅读

    OPA2333二放大是否可以实现万倍放大?

    供电电源:直流3.3v 待放大输入电压:10uV。 请问二放大是否可以实现万倍放大。如果可以,该怎样实现?
    发表于 08-13 06:58