0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

镁合金铸造缺陷的激光修复取得重大突破

深圳市科瑞特自动化技术有限公司 ? 2023-02-14 10:23 ? 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

镁合金铸性常存在气孔、夹杂等缺陷,而这些缺陷通常是零件加工到要求的尺寸后才被发现,因此导致镁合金铸件成品率很低。在镁合金缺陷的修复过程中,面临以下几方面的问题:

(1)粗晶问题:镁的熔点低(651℃),但因为镁导热快,所以必须采用较大功率的热源,这使得镁合金易产生过热和晶粒长大。

(2)氧化和蒸发:镁的活泼性极高,在高温下易被氧化形成氧化镁,其熔点高(2500℃),密度大(3.2q/cm3),在熔池中易形成细小片状的固态夹渣。而且,镁合金在没有隔绝氧的情况下,还容易燃烧。在高温下镁还容易和空气中的氨化合生成镁的氮化物,使熔区性能在冷却后变坏。镁的沸点不高(1100℃),高温下,镁很容易蒸发。所以镁合金在熔化时需要严格加以保护。

(3)热应力:镁及其合金热膨胀系数较大,约为钢的2倍,铝的1.2倍,所以,易引起较大的热应力,加剧裂纹的产生和引起工件变形。

(4)裂纹:镁容易与一些合金元素(如Cu、Al、Ni等)形成低熔点共晶,所以脆性温度区间较宽,易形成热裂纹。

(5)气孔:容易产生氢气孔,氢在镁中的溶解度随温度的降低而急剧减少,当氢的来源较多时,出现气孔的倾向是较大的。

(6)热源的控制:采用的热源必须有足够的能率,否则在加热时,热量会迅速向基体传导,轻则熔化层过深,重则整个基体熔化。

这使得镁合金的修复较之普通材料实现起来更为困难。

激光采用波长为1.06um的YAG激光,在专用气帘的保护下,有效避免了激光加工过程中,镁合金的氧化,成功实现了镁合金的激光修复。

应用领域:镁合金铸件缺陷的修复,如笔记本外壳、镁合金仪表盘、镁合金汽车零部件等。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 激光
    +关注

    关注

    20

    文章

    3498

    浏览量

    67791
  • 修复
    +关注

    关注

    1

    文章

    719

    浏览量

    23421
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    联合电子镁合金电驱动桥介绍

    新能源汽车产业加速升级,电驱动系统的创新已成为核心竞争力的关键支撑。联合电子镁合金电驱动桥以镁代铝(镁合金密度仅为铝合金 2/3)、高强度、优成型性等突出优势,为客户创造显著价值。
    的头像 发表于 07-31 17:51 ?605次阅读

    达坦能源TAPP智能无线井下压力监测系统取得重大突破

    近日,在陕北某区块煤岩气井测试中,达坦能源自主研发的TAPP智能无线井下压力监测系统取得重大突破
    的头像 发表于 07-31 11:16 ?533次阅读

    中软国际在能源化工行业大模型项目取得重大突破

    近日,中软国际签约某大型石油企业大模型开发项目。作为中国能源化工行业首个备案的大模型,此次签约标志着中软国际在能源化工行业人工智能领域取得重大突破。根据项目规划,中软国际将针对输送管质量检测、常减压工艺运行优化、设备预测性维护等业务场景,助力客户解决生产各环节问题,助力
    的头像 发表于 07-05 17:03 ?937次阅读

    柔性屏激光修屏禁区突破:新启航如何实现曲面 OLED 面板的无损修复

    有限公司在激光修屏技术上取得突破,为曲面 OLED 面板修复提供了新路径。 二、曲面 OLED 面板特性与修复难点 2.1 结构与特性
    的头像 发表于 06-28 09:48 ?324次阅读
    柔性屏<b class='flag-5'>激光</b>修屏禁区<b class='flag-5'>突破</b>:新启航如何实现曲面 OLED 面板的无损<b class='flag-5'>修复</b>?

    液晶手写板像素缺陷修复及相关液晶线路激光修复

    引言 液晶手写板凭借便捷书写、环保节能等优势广泛应用于教育、办公等领域,然而像素缺陷会严重影响书写流畅度与显示清晰度。研究像素缺陷修复及相关液晶线路激光
    的头像 发表于 05-19 09:36 ?304次阅读
    液晶手写板像素<b class='flag-5'>缺陷</b><b class='flag-5'>修复</b>及相关液晶线路<b class='flag-5'>激光</b><b class='flag-5'>修复</b>

    液晶面板暗点缺陷修复及相关液晶线路激光修复

    引言 在液晶面板的生产与应用中,暗点缺陷是影响显示质量的常见问题,极大降低了用户的视觉体验与产品的市场价值。研究暗点缺陷修复及相关液晶线路激光修复
    的头像 发表于 05-16 09:31 ?460次阅读
    液晶面板暗点<b class='flag-5'>缺陷</b><b class='flag-5'>修复</b>及相关液晶线路<b class='flag-5'>激光</b><b class='flag-5'>修复</b>

    液晶面板黑线缺陷修复及相关液晶线路激光修复

    引言 液晶面板作为现代显示设备的核心部件,黑线缺陷严重影响画面完整性与视觉观感,极大降低产品质量与市场竞争力。深入研究黑线缺陷修复及相关液晶线路激光
    的头像 发表于 05-14 09:20 ?644次阅读
    液晶面板黑线<b class='flag-5'>缺陷</b><b class='flag-5'>修复</b>及相关液晶线路<b class='flag-5'>激光</b><b class='flag-5'>修复</b>

    全球首次!民营企业核聚变装置实验取得重大突破

    近期,新奥“玄龙-50U”球形环氢硼聚变装置实验取得重大突破,成功实现了高温高密度、百万安培(兆安)等离子体电流。这是目前国际上首次实现百万安培氢硼等离子体放电,标志着新奥在球形环氢硼聚变研究领域
    的头像 发表于 05-08 18:07 ?564次阅读
    全球首次!民营企业核聚变装置实验<b class='flag-5'>取得</b><b class='flag-5'>重大突破</b>

    Figure AI宣布终止与OpenAI合作,称已在AI方面取得重大突破

    人工智能领域取得了“重大突破”。该公司声称,这一突破完全是在其内部独立开发的,无需依赖外部合作伙伴。这一成就不仅展示了Figure AI在技术研发方面的强大实力,也为其未来的发展奠定了坚实基础。 对于终止与OpenAI的合作,F
    的头像 发表于 02-06 14:08 ?547次阅读

    重大突破!优刻得×脑虎科技脑机接口临床试验取得新进展

    华山医院先后开展了高精度实时运动解码和语言解码临床试验研究,并取得重大技术突破,使得“脑控”智能设备和“意念对话”成为现实。高通量植入式柔性脑机接口临床试验取得
    的头像 发表于 01-03 16:57 ?1762次阅读
    <b class='flag-5'>重大突破</b>!优刻得×脑虎科技脑机接口临床试验<b class='flag-5'>取得</b>新进展

    国外科研团队在X射线科学领域取得重大突破

    近日,据《自然·光子学》报道,欧洲X射线自由电子激光装置(XFEL)和德国电子同步加速器研究中心团队在X射线科学领域取得重大突破。他们成功生成了前所未有的高功率、阿秒级硬X射线脉冲,且重复频率达到
    的头像 发表于 12-20 09:11 ?500次阅读

    D型高电位镁合金牺牲阳极的优点

    D型高电位镁合金牺牲阳极具有较高的电位,能够在电化学反应中有效提供电子,从而保护被保护的金属结构免受腐蚀。
    的头像 发表于 12-01 17:37 ?540次阅读
    D型高电位<b class='flag-5'>镁合金</b>牺牲阳极的优点

    Anthropic在人工智能领域取得重大突破

     10月23日消息,美国当地时间周二,人工智能初创企业Anthropic宣布了一项重大进展。这家由前OpenAI高管创立并获得亚马逊支持的公司,在人工智能领域取得了新的突破,其研发的AI智能体已经具备了与人类相当的能力,可以操作
    的头像 发表于 10-23 14:56 ?1156次阅读

    合金激光熔覆修复加工

    深入探讨钛合金激光熔覆修复加工技术,从原理、工艺优化、应用实例到未来发展,全方位解析这一前沿技术的魅力与潜力。 一、激光熔覆技术概述 激光
    的头像 发表于 10-23 10:04 ?708次阅读
    钛<b class='flag-5'>合金</b>轴<b class='flag-5'>激光</b>熔覆<b class='flag-5'>修复</b>加工

    中国芯片制造关键技术取得重大突破,预计一年内实现应用落地

    瓶颈。这一壮举不仅标志着我国在该领域的首次重大突破,更是有效突破了平面型碳化硅MOSFET芯片性能的上限。
    的头像 发表于 09-03 15:35 ?2837次阅读