0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

AI图像识别本质:人类看的是形状,算法看的是纹理

新机器视觉 ? 来源:斜杠人脉管理 ? 2023-06-11 10:11 ? 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

图片中的动物轮廓是猫,但是猫披着大象皮肤纹理,将图片交给人识别,人会说是猫,如果给计算机视觉算法处理,它会说是大象。德国研究人员认为:人看的是形状,计算机看的是纹理。这一发现相当有趣,但它证明计算机算法离人类视觉还有很远距离。

e7240cd4-07ee-11ee-962d-dac502259ad0.jpg

当你看着一张猫的照片,轻松就能知道猫有没有条纹,不管照片是黑白照,有斑点,还是磨损或者褪色了,都能轻松识别。不论宠物蜷缩在枕头背后;或者跳到工作台上,拍照时留下一片朦胧,你都能轻松识别。如果用机器视觉系统(用深度神经网络驱动)识别,准确率甚至比人还要高,但是当图片稍微新奇一点,或者有噪点、条纹,机器视觉系统就会犯傻了。

为什么会这样呢?德国研究团队给出一个原因,这个原因出乎意料:人类会关注图中对象的形状,深度学习计算机系统所用的算法不一样,它会研究对象的纹理。

德国的发现告诉我们人类与机器“思考”问题时有着明显区别,也许还能揭示人类视觉进化的秘密。

有大象皮肤的猫和时钟做的飞机

深度学习算法是怎样“工作”的呢?首先人类向算法展示大量图片,有的图片有猫,有的没有。算法从图片中找到“特定模式”,然后用模式来做出判断,看看面对之前从未见过的图片应该贴怎样的标签

神经网络架构是根据人类视觉系统开发的,网络各层连接在一起,从图片中提取抽象特点。神经网络系统通过一系列联系得出正确答案,不过整个处理过程十分神秘,人类往往只能在事实形成之后再解释这个神秘的过程。

美国俄勒冈州立大学计算机科学家Thomas Dietterich说:“我们正在努力,想搞清到底是什么让深度学习计算机视觉算法走向成功,又是什么让它变得脆弱。”

怎样做?研究人员修改图片,欺骗神经网络,看看会发生什么事。研究人员发现,即使只是小小的修改,系统也会给出完全错误的答案,当修改幅度很大时,系统甚至无法给图片贴标签。还有一些研究人员追溯网络,查看单个神经元会对图像做出怎样的反应,理解系统学到了什么。

德国图宾根大学(University of Tübingen)科学家Geirhos领导的团队采用独特方法进行研究。去年,团队发表报告称,他们用特殊噪点干扰图像,给图像降级,然后用图像训练神经网络,研究发现,如果将新图像交给系统处理,这些图像被人扭曲过(相同的扭曲),在识别扭曲图像时,系统的表现比人好。不过如果图像扭曲的方式稍有不同,神经网络就无能为力了,即使在人眼看来图像的扭曲方式并无不同,算法也会犯错。

对于这样的结果如何解释?研究人员深入思考:到底是什么发生了变化,即使只是加入很少的噪点,也会发生如此大的变化?答案是纹理。当你在很长的时间段内添加许多噪点,图中对象的形状基本不会受到影响;不过即使只是添加少量噪点,局部位置的架构也会快速扭曲。研究人员想出一个妙招,对人类、深度学习系统处理图片的方式进行测试。

研究人员故意制作存在矛盾的图片,也就是说将一种动物的形状与另一种动物的纹理拼在一起,制作成图片。例如,图片中的动物轮廓是猫,但是猫披着大象纹理;或者是一头熊,但它们是由铝罐组成的;又或者轮廓是飞机,但飞机是由重叠的钟面组成的。研究人员制作几百张这样的拼凑图片,然后给它们标上标签,比如猫、熊、飞机。用4种不同的分类算法测试,最终它们给出的答案是大象、铝罐、钟,由此看出算法关注的是纹理。

Columbia大学计算机神经科学家Nikolaus Kriegeskorte评论说:“这一发现改变了我们对深度前向神经网络视觉识别技术的认知。”

乍一看,AI偏爱纹理而非形状有点奇怪,但细细深思却是有理的。Kriegeskorte说:“你可以将纹理视为精密的形状。”对于算法系统来说精密的尺寸更容易把握:包含纹理信息的像素数量远远超过包含对象边界的像素数量,网络的第一步就是检测局部特征,比如线条,边缘。多伦多约克大学计算机视觉科学家John Tsotsos指出:“线段组按相同的方式排列,这就是纹理。”

Geirhos的研究证明,凭借局部特征,神经网络足以分辨图像。

另有科学家开发一套深度学习系统,它的运行很像深度学习出现之前的分类算法——像一个特征包。

“ 算法将图像分成为小块,接下来,它不会将信息逐步融合,变成抽象高级特征,而是给每一小块下一个决定,比如这块包含自行车、那块包含鸟。再接下来,算法将决定集合起来,判断图中是什么,比如有更多小块包含自行车线索,所以图中对象是自行车。算法不会考虑小块之间的空间关系。结果证明,在识别对象时系统的精准度很高。 ”

研究人员Wieland Brendel说:“这一发现挑战了我们之前的假定,我们之前认为深度学习的行为方式与旧模型完全不同。很明显,新模型有很大飞跃,但飞跃的幅度没有大家预料的那么大。”

约克大学、多伦多大学博士后研究员Amir Rosenfeld认为,网络应该做什么,它实际做了什么,二者之间仍有很大差异。

Brendel持有相似观点。他说,我们很容易就会假定神经网络按人类的方式完成任务,忘了还有其它方式。

向人类视觉靠近

目前的深度学习技术可以将局部特征(比如纹理)与整体模式(比如形状)结合 在一起。

Columbia大学计算机神经科学家Nikolaus Kriegeskorte说:“在这些论文中有一点让人感到稍稍有些奇怪,架构虽然允许这样做,不过如果你训练神经网络时只是希望它分辨标准图像,它不会自动整合,这点在论文中得到明显证明。”

如果强迫模型忽视纹理,又会怎样呢?Geirhos想找到答案。团队将训练分类算法的图片拿出来,用不同的方式给它们“粉刷”,将实用纹理信息剔除,然后再用新图片重新训练深度学习模型,系统转而依赖更全局的模式,像人类一样更加偏爱形状。

当算法这样行动时,分辨噪点图像的能力同样更强了,虽然在此之前研究人员并没有专门训练算法,让它识别扭曲图像。

对于人类来说,可能自然而然也存在这样的“偏爱”,比如偏爱形状,因为当我们看到一件东西,想确定它是什么时,靠形状判断是最有效的方式,即使环境中有许多干扰,同样如此。人类生活在3D世界,可以从多个角度观察,我们还可以借助其它感知(比如触觉)来识别对象。所以说,人类偏爱形状胜过纹理完全合理。

德国图宾根大学研究人员Felix Wichmann认为,这项研究告诉我们数据产生的偏见和影响远比我们认为的大得多。之前研究人员也曾发现相同的问题,例如,在面部识别程序、自动招聘算法及其它神经网络中,模型过于重视意料之外的特征,因为训练算法所用的数据存在根深蒂固的偏见。想将这种不想要的偏见从算法决策机制中剔除相当困难,尽管如此,Wichmann认为新研究证明剔除还是有可能的。

虽然Geirhos的模型专注于形状,不过如果图像中噪点过多,或者特定像素发生变化,模型仍然会失败。由此可以证明,计算机算法离人类视觉还有很远距离。在人类大脑中,可能还有一些重要机制没有在算法中体现出来。Wichmann认为,在某些情况下,关注数据集可能更重要。

多伦多大学计算机科学家Sanja Fidler认同此观点,她说:“我们要设计更聪明的数据和更聪明的任务。”她和同事正在研究一个问题:如何给神经网络分派第二任务,通过第二任务让它在完成主任务时有更好表现。受到Geirhos的启发,最近他们对图像分类算法进行训练,不只让算法识别对象本身,还让它识别对象轮廓(或者形状)中的像素。

结果证明,执行常规对象识别任务时,神经网络越来越好,自动变得越来越好。Fidler指出:“如果指派单一任务,你会特别关注某些东西,对其它视而不见。如果分派多个任务,也许能感知更多。算法也是一样的。”当算法执行多个任务时,它会关注不同的信息,就像Geirhos所做的“形状纹理”实验一样。


声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 算法
    +关注

    关注

    23

    文章

    4721

    浏览量

    96030
  • 图像识别
    +关注

    关注

    9

    文章

    529

    浏览量

    39291
  • AI
    AI
    +关注

    关注

    88

    文章

    35916

    浏览量

    283126

原文标题:AI图像识别本质:人类看的是形状,算法看的是纹理

文章出处:【微信号:vision263com,微信公众号:新机器视觉】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    基于米尔MYC-YM90X安路飞龙DR1开发板仪表图像识别系统开发

    资源,具备强大计算能力与灵活定制特性,为构建高性能仪表图像识别系统带来新机遇。通过合理利用其异构架构,可实现图像识别算法的高效执行,提升系统实时性与准确性。 二、安路飞龙 FPSOC 架构分析
    发表于 08-17 21:29

    国家级认证!拓维海云天“中文手写体作文图像识别评分生成算法”通过国家网信办备案

    近日,国家互联网信息办公室发布第十二批深度合成服务算法备案公告,拓维海云天自主研发的核心技术成果——“中文手写体作文图像识别评分生成算法”成功通过备案(备案编号:250011号)。这是拓维海云天在
    的头像 发表于 08-15 16:42 ?624次阅读
    国家级认证!拓维海云天“中文手写体作文<b class='flag-5'>图像识别</b>评分生成<b class='flag-5'>算法</b>”通过国家网信办备案

    华怡丰推出ISC-B/C系列图像识别传感器

    在工业自动化领域,精准、高效的视觉检测是提升生产效率的关键。华怡丰全新推出的ISC-B/C系列图像识别传感器集高精度定位、测量算法与先进图像处理技术于一体,为各类工业场景提供稳定、可靠的解决方案!
    的头像 发表于 08-15 11:36 ?365次阅读
    华怡丰推出ISC-B/C系列<b class='flag-5'>图像识别</b>传感器

    AI走向应用还得智能体,阿里、美团、滴滴相继入局!

    输入),根据自身学习到的知识和算法进行判断和决策,进而执行动作以影响环境或达到预定的目标。 ? AI智能体与传统AI的区别在于,传统AI通常专注于单一任务,如
    的头像 发表于 06-15 00:00 ?5771次阅读

    智能眼镜AI需求倒逼芯片革命,高通、ST芯片方案如何适配

    但不限于语音识别与控制、实时翻译、图像识别与增强现实(AR)等。为了支持上述高级功能,智能眼镜对其主控芯片提出了更高的要求。 ? ? 智能眼镜AI 性能需求提升,新一代芯片该如何设计 当前,新一代
    的头像 发表于 04-12 00:54 ?3353次阅读
    智能眼镜<b class='flag-5'>AI</b>需求倒逼芯片革命,<b class='flag-5'>看</b>高通、ST芯片方案如何适配

    手持终端集装箱识别系统的图像识别技术

    行业提供了更灵活、精准的管理工具。 一、技术核心:OCR+AI深度融合 现代手持终端系统采用多模态图像识别技术,结合深度学习算法,可快速捕捉并解析集装箱号码。其技术优势体现在: 1. 复杂环境适应性:通过动态曝光补偿和
    的头像 发表于 04-03 10:49 ?359次阅读

    岸桥箱号识别系统如何工作?揭秘AI图像识别技术!

    在港口自动化升级的浪潮中,AI岸桥识别系统凭借前沿的图像识别技术,成为提升码头作业效率的“智慧之眼”。那么,这套系统如何实现集装箱信息的精准捕捉?又是如何通过AI技术替代传统人工理货?
    的头像 发表于 04-02 09:45 ?345次阅读

    BP神经网络在图像识别中的应用

    BP神经网络在图像识别中发挥着重要作用,其多层结构使得网络能够学习到复杂的特征表达,适用于处理非线性问题。以下是对BP神经网络在图像识别中应用的分析: 一、BP神经网络基本原理 BP神经网络,即反向
    的头像 发表于 02-12 15:12 ?817次阅读

    AI模型部署边缘设备的奇妙之旅:目标检测模型

    1简介人工智能图像识别是人工智能领域的一个重要分支,它涉及计算机视觉、深度学习、机器学习等多个领域的知识和技术。图像识别主要是处理具有一定复杂性的信息。计算机采用与人类类似的图像识别
    的头像 发表于 12-19 14:12 ?1463次阅读
    <b class='flag-5'>AI</b>模型部署边缘设备的奇妙之旅:目标检测模型

    高帧频图像识别反无人机 慧视有办法!

    的基础上加装AI高性能图像处理板,在算法的作用下,就具备无人机识别的功能,为无人机对抗创造条件。由于无人机飞行速度极快,因此针对于这样环境下的AI
    的头像 发表于 12-04 01:06 ?690次阅读
    高帧频<b class='flag-5'>图像识别</b>反无人机   慧视有办法!

    AI图像识别摄像机

    AI图像识别摄像机是一种集成了先进算法和深度学习模型的智能监控设备。这些摄像机不仅能够捕捉视频画面,还能实时分析和处理所拍摄的内容,从而实现对特定对象、场景或行
    的头像 发表于 11-08 10:38 ?999次阅读
    <b class='flag-5'>AI</b><b class='flag-5'>图像识别</b>摄像机

    AI大模型在图像识别中的优势

    AI大模型在图像识别中展现出了显著的优势,这些优势主要源于其强大的计算能力、深度学习算法以及大规模的数据处理能力。以下是对AI大模型在图像识别
    的头像 发表于 10-23 15:01 ?2683次阅读

    【飞凌嵌入式OK3576-C开发板体验】RKNPU图像识别测试

    和突触的处理器,特别擅长处理人工智能任务,能够大大降低CPU和GPU的负担。 功能 :RKNPU负责处理需要高计算性能的人工智能任务,如图像识别、语音识别、自然语言处理等,从而提升设备的智能化水平
    发表于 10-10 09:27

    深度识别算法包括哪些内容

    :CNN是深度学习中处理图像和视频等具有网格结构数据的主要算法。它通过卷积层、池化层和全连接层等组件,实现对图像特征的自动提取和识别。 应用领域 :CNN在
    的头像 发表于 09-10 15:28 ?931次阅读

    基于迅为RK3568/RK3588开发板的AI图像识别方案

    https://www.bilibili.com/video/BV1G54y1A7nf/?spm_id_from=333.999.0.0 迅为RK3568/RK3588开发板AI识别演示方案,包括
    发表于 08-28 09:50