0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

不易燃、局部高浓离子液体电解质成就低温锂金属电池!

清新电源 ? 来源:电化学能源 ? 2023-06-06 14:14 ? 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

【背景】

锂金属是用于下一代高能量密度电池的有前途的阳极材料,但存在剥离/电镀库仑效率低和枝晶生长的问题,尤其是在低于零的温度下。

【工作介绍】

近日,德国乌尔姆亥姆霍兹电化学储能研究所Stefano Passerini等团队提出了一种用于低温锂金属电池的不易燃、局部浓缩的离子液体电解质,其液相范围远低于 0 °C。其全阴离子 Li+溶剂化和相-纳米分离溶剂化结构在低温下得以维持,与富含无机化合物的固体电解质界面相结合,可使锂金属负极在 -20 °C 和 0.5 mA cm-2下无枝晶运行,库仑效率为 98.9%。因此,使用薄锂金属阳极 (4 mAh cm-2) 和高负载 LiNi0.8Co0.15Al0.05O2阴极 (10 mg cm-2) 的锂金属电池在 -20° 下循环 100 次后仍保留初始容量的 70% 。这些结果作为概念证明,证明了局部浓缩的离子液体电解质在低温锂金属电池中的适用性。

【具体内容】

最先进的 LCILE 由摩尔比为 12 的 LiFSI、EmimFSI 和 1,2-二氟苯 (dFBn) 组成,即 [LiFSI]1[EmimFSI]2[dFBn]2(FEdF)和纯 ILE,即 [LiFSI]1[EmimFSI]2(FE),被选为模型电解质,以评估 LCILEs 对 LMAs 的相容性以及非溶剂化助溶剂对 LCILEs 的影响LMA 在低温下的特性。预计采用纯 ILE 的 LMB 即使在 0.1 mA cm-2的低电流密度下也不能在 -20 °C 下运行。另一方面,FEdF 在相同温度下表现出彻底改善的离子传输,能够在高达 0.5 mA cm-2的电流密度下剥离/电镀锂,这得益于保持良好的 Li+溶剂化和溶液结构。此外,FEdF 提供了 98.3% 的锂剥离/电镀 CE 和 Li/Li 电池在 -20 °C 下长达 1600 小时的无枝晶循环,这也是富含无机化合物的 SEI 的结果。此外,FEdF 在 -20 °C 下显示出与高压 LiNi0.8Co0.15Al0.05O2(NCA) 阴极的高度相容性。随着电解质成分的进一步优化,在-20 °C下锂剥离/电镀效率达到98.9%。

测量电解质的闪点以评估它们的可燃性。由于非挥发性和高热稳定性,FE 在 25-300 °C 的温度范围内未检测到闪点。添加闪点为 1 °C 的挥发性 dFBn 会导致 FEdF 在 114 °C 发生闪蒸,这是由于三元混合物相对于 FE 的蒸气压增加。由于美国职业安全与健康标准将闪点等于或低于 93°C 的液体定义为易燃液体, FEdF 可归类为低易燃性。

2189f3f2-042f-11ee-90ce-dac502259ad0.png

图 1. (a) EmimFSI、dFBn、FE 和 FEdF 的 DSC 热分析图。(b) FE 和 FEdF 在不同温度下的离子电导率。

电解质冻结是导致低温下电化学性能差、离子电导率低的问题之一。差示扫描量热法 (DSC) 测量用于研究电解质的热性能。如图 1a 所示,EmimFSI 和 dFBn 的熔化温度 (Tm) 分别为 -14.3 和 -48.0 °C。当 LiFSI 以 1:2 的摩尔比添加到 EmimFSI 时,混合物(即 FE)没有显示 Tm 点,但在 -85.6 °C 时显示玻璃化转变 (Tg)。FEdF 的 Tg 在更低的温度下观察到,即 -90.6 °C。总之,结果表明 FE 和 FEdF 在很宽的温度范围内都是液体。FE 和 FEdF 的离子电导率是在 -40 °C 至 50 °C 的温度范围内测量的。一般来说,FEdF 表现出比 FE 更高的离子电导率,如图 1b 所示,表现出出色的离子传输。例如,FE 和 FEdF 在 -20 °C 时的离子电导率分别为 0.50 和 1.67 mS cm-1。这些结果意味着可能使用 FEdF 作为低温电池的电解质。

如前所述,电解质的结构,尤其是 Li+的局部溶剂化,对于低温下无枝晶锂剥离/电镀非常重要。因此,拉曼光谱被用于解决 FSI-与 Li+的配位问题在 FE 和 FEdF 中,温度范围为 -40 至 40 °C。FSI-在 700-770 cm-1范围内常用的 vs(S-N-S) 模式与来自 EMIM+和 dFBn 的信号重叠。然而,FSI-的 vs(SO2) 模式不受任何干扰,因此被选择用于分析。Neat EmimFSI 在 1217.2 cm-1处出现峰值,从 -20 到 40 °C 没有任何变化(图 2a)。峰值源自“自由”FSI-仅与笨重的 EMIM+微弱配位。在 -40 °C 时,由于 EmimFSI 的冻结,该峰略微移动至 1215.4 cm-1。与纯 EmimFSI 相比,FE 和 FEdF 检测到更高波数的更宽峰(图2b)。这些变化可归因于 FSI-与 Li+的配位。此外,还观察到两种电解质的峰随着温度的降低而连续向更高的波数移动,表明在较低的温度下更多的 FSI-参与了 Li+的溶剂化。

例如,图 2c 显示了 FEdF 在 20 °C 和 -20 °C 时对该峰的拟合分析。在 20 °C 和 -20 °C 时,Li+配位的 FSI-的分数分别为 71.5% 和 76.3%。因此,在检测的温度范围内,FEdF 中 Li+的全阴离子溶剂化鞘层不受影响。

21972266-042f-11ee-90ce-dac502259ad0.png

图 2. (a) EmimFSI 和 (b) FEdF 在对应于 FSI 的 vs(SO2) 模式的区域中的拉曼光谱- 在 40 至 -40 °C 的温度范围内测量。(c) FEdF 在 20 °C 和 -20 °C 时的拉曼光谱拟合分析。“自由”FSI-对应于 FSI-与 EMIM+弱配位。(d) 在 20 °C(顶部)和 -20 °C(底部)收集的实验 SWAXS 图案。(e) 在 20 °C(左)和 -20 °C(右)下模拟的计算 SWAXS 模式和相应的部分结构因子。FEdF 模拟箱在 (f) 20 °C 和 (g) -20 °C 时的快照。两个盒子的边长约为 60 ?。空白区域和蓝色部分分别代表系统的离子部分和 dFBn。

21a13bde-042f-11ee-90ce-dac502259ad0.png

图 3. -20 °C 下 FE 和 FEdF 中 LMA 的电化学性能。

21ab3f4e-042f-11ee-90ce-dac502259ad0.png

图 4. (a) 原始锂箔和 (b,c) LMA 在 -20 °C 下在 FEdF 中进行 50 次剥离/电镀循环后的 SEM 图像。(d) Ar+溅射前后循环 LMA 的 XPS 光谱。

21b93978-042f-11ee-90ce-dac502259ad0.png

图 5. 在 -20 °C 下使用 FE 和 FEdF 电解质的 Li/NCA (2.7 mg cm-2) 电池的电化学性能。

21c6149a-042f-11ee-90ce-dac502259ad0.png

图 6. 使用 (a,b) 500 μm 厚或 (c,d) 20 μm 厚 (4 mAh cm-2) 锂金属的 Li/FEdF/NCA (10 mg cm-2) 电池的循环稳定性-20 °C 的阳极。(a,c) 循环时放电比容量和 CE 的演变。(b,d) 循环测试中几个选定循环的放电/充电曲线。在 C/20 的两个形成循环之后,电池以 C/10 充电和 C/5 放电循环。1C 为 200 mA g-1。

【结论】

本工作提出了一种不易燃的 LCILE,它具有宽的液相线范围和低温下充足的离子传输,可用于低温 LMB。由阴离子组成的 Li+溶剂化和相纳米偏析的独特溶液结构不受低温(低至 20 °C)的影响,使 LMA 在电流密度高达 0.5 mA cm-2时无枝晶运行。阴离子衍生的 SEI 富含无机化合物,可在 -20 °C 下实现高度可逆的锂剥离/电镀。受益于充足的 Li+传输和高度可逆的 LMA,具有 10 mg cm-2面积负载的 LMA 和 NCA 正电极的电池稳定循环是可能的。此外,通过电解液成分的合理优化,可以进一步提高锂剥离/电镀性能。总的来说,这些结果证明了 LCILE 对低温 LMB 的有利使用。





审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 锂电池
    +关注

    关注

    261

    文章

    8456

    浏览量

    177417
  • 电解质
    +关注

    关注

    6

    文章

    824

    浏览量

    20914
  • XPS
    XPS
    +关注

    关注

    0

    文章

    98

    浏览量

    12321
  • LMA
    LMA
    +关注

    关注

    0

    文章

    4

    浏览量

    2349
  • 锂金属电池
    +关注

    关注

    0

    文章

    140

    浏览量

    4680

原文标题:乌尔姆亥姆霍兹电化学储能研究所Angew.:不易燃、局部高浓离子液体电解质成就低温锂金属电池!

文章出处:【微信号:清新电源,微信公众号:清新电源】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    离子电池电解质填充工艺:技术原理与创新实践

    在锂离子电池的全生命周期中,电解质填充工艺的技术精度直接关联电池的能量密度、循环稳定性与安全性。美能锂电作为新能源制造领域的创新引领者,始终以精密工艺为基石,在电解质填充技术的研发与应
    的头像 发表于 08-11 14:53 ?80次阅读
    锂<b class='flag-5'>离子电池</b><b class='flag-5'>电解质</b>填充工艺:技术原理与创新实践

    临界电流密度固态电池单晶的合成

    金属一直以来被认为是高能量密度电池的理想负极材料。不幸的是,金属负极在实际电流密度下容易形成枝晶,限制了其应用。早期的理论工作预测,具有
    的头像 发表于 03-01 16:05 ?865次阅读
    <b class='flag-5'>高</b>临界电流密度固态<b class='flag-5'>电池</b>单晶<b class='flag-5'>锂</b>的合成

    清华大学:自由空间对硫化物固态电解质表面及内部裂纹处沉积行为的影响

    清华新闻网2月7日电 硫化物固态电解质Li5.5PS4.5Cl1.5具有锂离子电导率(≈10 mS/cm)、机械加工性能优异、与金属负极
    的头像 发表于 02-14 14:49 ?525次阅读
    清华大学:自由空间对硫化物固态<b class='flag-5'>电解质</b>表面及内部裂纹处<b class='flag-5'>锂</b>沉积行为的影响

    无阳极固态电池的电化学力学

    离子电池推动了消费电子产品的发展,加速了电动汽车的普及。但是目前的锂离子电池技术仍难以满足重型车辆和电动飞行器等领域的要求。固态电池(SSBs)使用固态电解质(SSE)取代
    的头像 发表于 01-24 10:44 ?701次阅读
    无阳极固态<b class='flag-5'>电池</b>的电化学力学

    全固态金属电池的最新研究

    成果简介 全固态金属电池因其高安全性与能量密度而备受关注,但其实际应用受限于的低可逆性、有限的正极载量以及对高温高压操作的需求,这主要源于固态
    的头像 发表于 01-23 10:52 ?918次阅读
    全固态<b class='flag-5'>锂</b><b class='flag-5'>金属</b><b class='flag-5'>电池</b>的最新研究

    研究论文::乙烯碳酸酯助力聚合物电解质升级,提升高电压金属电池性能

    1、 导读 >> ? ? 该研究探讨了乙烯碳酸酯(VC)添加剂在聚丙烯酸酯(PEA)基固态聚合物电解质中的作用。结果表明,VC添加剂显著提升了电解质的锂离子电导率和迁移数,同时提高了
    的头像 发表于 01-15 10:49 ?776次阅读
    研究论文::乙烯碳酸酯助力聚合物<b class='flag-5'>电解质</b>升级,提升高电压<b class='flag-5'>锂</b><b class='flag-5'>金属</b><b class='flag-5'>电池</b>性能

    斯坦福大学鲍哲南/崔屹PNAS:高性能金属电池用单氟电解质

    背景介绍 金属电池因其理论比容量(3860 mAh g-1)和低还原电位(-3.04 V)而备受关注。然而,
    的头像 发表于 01-14 13:53 ?703次阅读
    斯坦福大学鲍哲南/崔屹PNAS:高性能<b class='flag-5'>锂</b><b class='flag-5'>金属</b><b class='flag-5'>电池</b>用单氟<b class='flag-5'>电解质</b>

    一种薄型层状固态电解质的设计策略

    研 究 背 景 用固态电解质(SSE)代替有机电解液已被证明是克服高能量密度金属电池安全性问题的有效途径。为了开发性能优异的全固态
    的头像 发表于 12-31 11:21 ?962次阅读
    一种薄型层状固态<b class='flag-5'>电解质</b>的设计策略

    半互穿网络电解质用于电压金属电池

    研究背景 基于镍正极的金属电池的能量密度有望超过400 Wh kg-1,然而在电压充电时,
    的头像 发表于 12-23 09:38 ?1048次阅读
    半互穿网络<b class='flag-5'>电解质</b>用于<b class='flag-5'>高</b>电压<b class='flag-5'>锂</b><b class='flag-5'>金属</b><b class='flag-5'>电池</b>

    离子液体添加剂用于高压无负极金属电池

    ? ? ? ?研究背景 基于双(氟磺酰基)酰亚胺(LiFSI)的浓缩电解质已被提出作为无负极金属电池(AFLMB)的有效
    的头像 发表于 12-10 11:00 ?1448次阅读
    <b class='flag-5'>离子</b><b class='flag-5'>液体</b>添加剂用于高压无负极<b class='flag-5'>锂</b><b class='flag-5'>金属</b><b class='flag-5'>电池</b>

    北京科技大学范丽珍教授团队In和F共掺杂LPSCl制备固体电解质

    ? 研究背景 离子电池(LIBS)因其可回收性、高能量和功率密度而广受赞誉,使其在能源储存系统、便携式电子设备和电动汽车等各种应用中非常受欢迎。然而,使用易燃
    的头像 发表于 12-04 10:05 ?1103次阅读
    北京科技大学范丽珍教授团队In和F共掺杂LPSCl制备固体<b class='flag-5'>电解质</b>

    通过电荷分离型共价有机框架实现对金属电池固态电解质界面的精准调控

    (-3.04 V vs SHE),被认为是次世代电池的最优选择。然而,金属负极的实际应用面临诸多挑战,其中最关键的问题是枝晶的生长和副反应的发生。这些问题不仅会导致
    的头像 发表于 11-27 10:02 ?1064次阅读
    通过电荷分离型共价有机框架实现对<b class='flag-5'>锂</b><b class='flag-5'>金属</b><b class='flag-5'>电池</b>固态<b class='flag-5'>电解质</b>界面的精准调控

    全固态金属电池阳极夹层设计

    全固态金属电池(ASSLB)由于其高能量密度和高安全性而引起了人们的强烈兴趣,金属被认为是一种非常有前途的负极材料。然而,由于
    的头像 发表于 10-31 13:45 ?769次阅读
    全固态<b class='flag-5'>锂</b><b class='flag-5'>金属</b><b class='flag-5'>电池</b>的<b class='flag-5'>锂</b>阳极夹层设计

    固态电池中复合阳极上固体电解质界面的调控

    采用固体聚合物电解质(SPE)的固态金属电池(SSLMB)具有更高的安全性和能量密度,在下一代储能领域具有很大的应用前景。
    的头像 发表于 10-29 16:53 ?1172次阅读
    固态<b class='flag-5'>电池</b>中复合<b class='flag-5'>锂</b>阳极上固体<b class='flag-5'>电解质</b>界面的调控

    聚合物电池与锂电池的区别

    以下是一些关键点: 结构和材料 : 聚合物电池 :使用凝胶状的聚合物电解质,通常由盐和聚合物基质组成。这种结构提供了更好的安全性,因为聚合物电解质在过热时不会像
    的头像 发表于 09-29 09:56 ?1553次阅读