0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

自组装新策略实现微液滴空腔内超分子金属笼的可控精准构筑

微流控 ? 来源:微流控 ? 2023-05-30 10:03 ? 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

自从1987年诺贝尔化学奖授予在超分子化学领域做出突出贡献的三位科学家以来,超分子化学已经发展成为一门和生命科学、材料科学、信息科学以及医学等诸多领域相互融合和交叉的前沿学科。作为超分子化学研究的核心内容之一,自组装被认为是在分子以上层次创造新物质和产生新功能的重要手段。发展新的自组装策略一直是超分子化学研究领域中的重要科学问题,是推动超分子化学发展的动力之一。

近期,华东师范大学化学与分子工程学院徐林教授课题组基于微纳流控技术发展了微液滴内限域自组装新策略,实现了微液滴空腔内部超分子金属笼的可控精准构筑。与传统组装策略相比较,该策略不仅大大提高了自组装的效率,还提升了组装体的催化活性。相关成果以“Highly Efficient Self-Assembly of Metallacages and Their Supramolecular Catalysis Behaviors in Microdroplets”为题发表在化学领域顶级期刊《德国应用化学》(Angew. Chem. Int. Ed.)上,并被遴选为当期内封面。

近年来,通过配位键导向自组装策略构筑结构新颖的金属笼,并探索其在传感、分离、催化、诊疗等领域的应用引起了广泛关注。迄今为止,绝大多数已报道的金属笼都是在开放环境中(反应瓶中)制备而成的。然而,生命体系中许多生物大分子(如DNA、RNA、蛋白质等)都是在环境受限的细胞中自组装形成复杂高级的组装体,从而维持机体正常的生命活动。受自然界中自组装行为的启发,如何在类细胞的限域微反应器中实现超分子组装体的高效可控精准组装并提升组装性能引起了研究者们的极大兴趣。

基于此,徐林教授课题组通过微纳流控技术制备了尺寸均一、稳定性好的微液滴,此类微液滴尺寸与细胞相近,内外环境与细胞类似,可作为一类新型的类细胞限域微反应器。由于微纳流控技术可精确控制各组装基元的通道流速、压力、组份比例,实现了微液滴空腔内部超分子金属笼的可控精准构筑(图1)。

1e18c3be-fe86-11ed-90ce-dac502259ad0.png

图1 (a)通过微纳流控技术制备尺寸均一的微液滴示意图;(b)通过微纳流控技术在线制备W/O微液滴的显微镜图像;(c)微液滴及其空腔内金属笼的示意图

为考察该策略的普适性,课题组在微液滴中构筑了五类结构不同的超分子金属笼。如图2所示,无论是四面体金属笼、六面体金属笼,还是互锁金属笼,均可以在微液滴中十分钟内以近乎定量的产率完成自组装,而在传统开放环境中(反应瓶中)制备这些金属笼往往需要耗时数小时。进一步,研究人员选择金属笼1为代表,以开环反应作为模型反应,研究了微液滴中的金属笼的催化性能(图3)。课题组制备了四种不同尺寸的微液滴,通过一系列动力学、热力学实验研究了微液滴中金属笼催化的高效性。

例如,随着微液滴体积的减小,催化速率常数(K)、反应最大速率(Vm)、催化反应周转数(Kcat)和催化剂效率(Kcat/Km)均不断增加,而米氏常数(Km)降低,并且金属笼的催化周转数和催化反应的速率常数都与微液滴的直径呈负相关。与传统开放环境中(反应瓶中)的活化能Ea = 9.07 kJ/mol相比,当反应在D = 73.9 μm微液滴(Ea = 5.44 kJ/mol)中发生时,反应活化能降低了3.63 kJ/mol。微液滴中金属笼催化活性的提高主要是因为微液滴限域环境中表面积与体积比的大幅度增加以及微纳流控通道内部高效的传质传热效率。

1e314e70-fe86-11ed-90ce-dac502259ad0.png

图2 (a)通过微纳流控技术在微液滴中制备金属笼1的示意图;(b)金属笼2-5的结构

1e5870a4-fe86-11ed-90ce-dac502259ad0.png

图3 (a)通过微纳流控技术在微液滴中实现金属笼1的催化开环反应示意图;(b)使用不同的微纳流控液滴芯片制备的四种不同尺寸的高分散性、高均一性的微液滴;(c)传统开放环境中(反应瓶中)和四种不同尺寸微液滴中超分子催化的Michaelis-Menten图;(d)传统开放环境中(反应瓶中)和四种不同尺寸微液滴中超分子催化的Lineweaver-Burk图





审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 反应器
    +关注

    关注

    2

    文章

    105

    浏览量

    11573
  • RNA
    RNA
    +关注

    关注

    0

    文章

    46

    浏览量

    9935

原文标题:基于微纳流控技术的自组装新策略,实现微液滴空腔内超分子金属笼的可控精准构筑

文章出处:【微信号:Micro-Fluidics,微信公众号:微流控】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    电压放大器驱动流控芯片关键功能实现研究

    实验名称: 电压放大器在流控芯片的功能研究中的应用 研究方向: 流控生物芯片 测试目的:
    的头像 发表于 07-30 14:24 ?135次阅读
    电压放大器驱动<b class='flag-5'>液</b><b class='flag-5'>滴</b><b class='flag-5'>微</b>流控芯片关键功能<b class='flag-5'>实现</b>研究

    隆基最新Nature:非对称自组装分子刷新钙钛矿/硅叠层电池效率至34.58%!

    在绒面硅基板上实现高有序、均匀覆盖的自组装分子层(SAMs)是提升钙钛矿/硅叠层电池(TSCs)效率的关键难题。本文开发了一种不对称自组装分子
    的头像 发表于 07-11 09:03 ?649次阅读
    隆基最新Nature:非对称<b class='flag-5'>自组装</b><b class='flag-5'>分子</b>刷新钙钛矿/硅叠层电池效率至34.58%!

    定向自组装光刻技术的基本原理和实现方法

    定向自组装光刻技术通过材料科学与自组装工艺的深度融合,正在重构纳米制造的工艺组成。主要内容包含图形结构外延法、化学外延法及图形转移技术。
    的头像 发表于 05-21 15:24 ?802次阅读
    定向<b class='flag-5'>自组装</b>光刻技术的基本原理和<b class='flag-5'>实现</b>方法

    安泰功率放大器在多组分交流电场下可控融合研究中的应用

    实验名称:功率放大器在多组分交流电场下可控融合研究中的应用 实验内容: 该
    的头像 发表于 04-16 11:22 ?295次阅读
    安泰功率放大器在多组分<b class='flag-5'>微</b><b class='flag-5'>液</b><b class='flag-5'>滴</b>交流电场下<b class='flag-5'>可控</b>融合研究中的应用

    位传感器:金属容器精准检测的关键技术

    在众多工业生产、仓储物流以及日常生活场景中,对金属容器位的精确检测是一项至关重要的任务。位传感器作为实现这一目标的核心设备,凭借其高度
    的头像 发表于 04-07 10:16 ?599次阅读
    <b class='flag-5'>液</b>位传感器:<b class='flag-5'>金属</b>容器<b class='flag-5'>内</b><b class='flag-5'>液</b>位<b class='flag-5'>精准</b>检测的关键技术

    功率放大器在流控细胞分选中的应用

    摘要:通过对的大小和形状进行控制,可以实现对单个细胞的分选。本文综述了国内外在
    的头像 发表于 04-03 10:08 ?359次阅读
    功率放大器在<b class='flag-5'>液</b><b class='flag-5'>滴</b><b class='flag-5'>微</b>流控细胞分选中的应用

    用于的连续流动洗涤流控系统

    流体基于一个由几个已建立的单元操作组成的工具箱,包括生成、培养、混合、微微注射和分选。在过去的二十年里,将这些多单元操作整合到工作
    的头像 发表于 12-26 15:04 ?434次阅读

    基于流动聚焦结构的形成机理

    流控芯片 又称芯片实验室,指在厘米级的芯片上,由通道形成网络,使可控流体贯穿整个系统,以实现常规化学或生物学实验室的各种功能,在生物和化学等领域具有良好的应用前景。
    的头像 发表于 12-23 15:29 ?581次阅读
    基于流动聚焦结构的<b class='flag-5'>微</b><b class='flag-5'>液</b><b class='flag-5'>滴</b>形成机理

    NOVA无误差流体

    高通量筛选技术是解开生物学奥秘的关键。然而,流体在实现单细胞分辨率、超高通量筛查方面的前景在很大程度上仍未实现。由多分散
    的头像 发表于 12-18 16:28 ?458次阅读

    基于介电电泳的选择性萃取流体装置用于单细胞分析

    我们开发了一种流体装置,可以基于介电电泳从多个捕获袋中选择性提取。该装置由一个主通道
    的头像 发表于 11-11 14:10 ?518次阅读

    Aigtek功率放大器在疏水表面非接触式操控研究中的应用

    换能器与疏水基材之间形成超声驻波,实现了无需物理接触即可操控。我们展示了即使是体积小于20微升的微小
    的头像 发表于 11-07 15:24 ?533次阅读
    Aigtek功率放大器在<b class='flag-5'>超</b>疏水表面非接触式操控<b class='flag-5'>液</b><b class='flag-5'>滴</b>研究中的应用

    ATA-1372A宽带功率放大器在超声驱动喷嘴制备中的应用

    实验名称:超声驱动喷嘴制备系统实验内容:设计了一种集成了高通量制备和定向分配功能的超
    的头像 发表于 10-09 18:52 ?638次阅读
    ATA-1372A宽带功率放大器在超声驱动喷嘴<b class='flag-5'>微</b><b class='flag-5'>液</b><b class='flag-5'>滴</b>制备中的应用

    深视智能高速摄像机在控流实验中的应用

    01项目背景控流技术是一种在尺度条件下对少量流体进行精确且系统地控制的技术,其应用领域广泛,包括医药、化工、材料科学等多个行业。在控流技术中,
    的头像 发表于 09-03 08:06 ?658次阅读
    深视智能高速摄像机在<b class='flag-5'>液</b><b class='flag-5'>滴</b><b class='flag-5'>微</b>控流实验中的应用

    流控芯片在生物学有何应用?流控芯片、检测技术介绍

    一、流控芯片相关技术 1、技术 操控包
    的头像 发表于 08-14 14:28 ?1252次阅读

    功率放大器在多组分交流电场下可控融合研究中的应用

    实验名称:功率放大器在多组分交流电场下可控融合研究中的应用实验内容:该
    的头像 发表于 08-12 14:14 ?548次阅读
    功率放大器在多组分<b class='flag-5'>微</b><b class='flag-5'>液</b><b class='flag-5'>滴</b>交流电场下<b class='flag-5'>可控</b>融合研究中的应用