0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

大脑视觉信号被Stable Diffusion复现成图像!

CVer ? 来源:量子位 ? 2023-03-06 10:56 ? 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

“现在Stable Diffusion已经能重建大脑视觉信号了!”

就在昨晚,一个听起来细思极恐的“AI读脑术”研究,在网上掀起轩然大波:

5669e49c-bb5f-11ed-bfe3-dac502259ad0.png

这项研究声称,只需用fMRI(功能磁共振成像技术,相比sMRI更关注功能性信息,如脑皮层激活情况等)扫描大脑特定部位获取信号,AI就能重建出我们看到的图像!

58061578-bb5f-11ed-bfe3-dac502259ad0.png

例如这是一系列人眼看到的图像,包括戴着蝴蝶结的小熊、飞机和白色钟楼:

58365594-bb5f-11ed-bfe3-dac502259ad0.png

AI看了眼人脑信号后,立马就给出这样的结果,属实把该抓的重点全都抓住了:

58ef8e38-bb5f-11ed-bfe3-dac502259ad0.gif

再发展一步,这不就约等于哈利波特里的读心术了吗??

5b13639c-bb5f-11ed-bfe3-dac502259ad0.png

更有网友感到惊叹:如果说ChatGPT开放API是件大事,那这简直称得上疯狂。

5b5c7f82-bb5f-11ed-bfe3-dac502259ad0.png

所以,这究竟是怎么一回事?

用Stable Diffusion可视化人脑信号

这项研究来自日本大阪大学,目前已经被CVPR 2023收录:

5b73ba26-bb5f-11ed-bfe3-dac502259ad0.png

High-resolution image reconstruction with latent diffusion models from human brain activity

研究希望能从人类大脑活动中,重建高保真的真实感图像,来理解大脑、并解读计算机视觉模型和人类视觉系统之间的联系。

要知道,此前虽然有不少脑机接口研究,致力于从人类大脑活动中读取并重建信号,如意念打字等。

然而,从人类大脑活动中重建视觉信号——具有真实感的图像,仍然挑战极大。

例如这是此前UC伯克利做过的一项类似研究,复现一张人眼看到的飞机片段,但计算机重建出来的图像却几乎看不出飞机的特征:

5bde0c96-bb5f-11ed-bfe3-dac502259ad0.png

△图源UC伯克利研究Reconstructing Visual Experiences from Brain Activity Evoked by Natural Movies

这次,研究人员重建信号选用的AI模型,是这一年多在图像生成领域地位飞升的扩散模型。

当然,更准确地说是基于潜在扩散模型(LDM)——Stable Diffusion。

整体研究的思路,则是基于Stable Diffusion,打造一种以人脑活动信号为条件的去噪过程的可视化技术。

它不需要在复杂的深度学习模型上进行训练或做精细的微调,只需要做好fMRI(功能磁共振成像技术)成像到Stable Diffusion中潜在表征的简单线性映射关系就行。

它的概览框架是这样的,看起来也非常简单:

仅由1个图像编码器、1个图像解码器,外加1个语义解码器组成。

5c6acb86-bb5f-11ed-bfe3-dac502259ad0.png

具体怎么work?

如下图所示,第一部分为本研究用到的LDM示意图。

其中ε代表图像编码器,D代表图像解码器,而τ是一个文本编码器(CLIP)。

5d81b124-bb5f-11ed-bfe3-dac502259ad0.png

重点是解码分析,如下图所示,模型依次从大脑早期(蓝色)和较高(黄色)视觉皮层内的fMRI信号中,解码出重建图像(z)和相关文本c的潜在表征。

然后将这些潜在表征当作输入,就可以得到模型最终复现出来的图像Xzc。

5da3fd88-bb5f-11ed-bfe3-dac502259ad0.png

最后还没有完,如编码分析示意图,作者还构建了一个编码模型,用来预测LDM不同组件(包括图像z、文本c和zc)所对应的fMRI信号,它可以用来理解Stable Diffusion的内部过程。

5dff944a-bb5f-11ed-bfe3-dac502259ad0.png

可以看到,采用了zc的编码模型在大脑后部视觉皮层产生的预测精确度是最高的。(zc是与c进行交叉注意的反向扩散后,z再添加噪声的潜在表征)

5e8b3586-bb5f-11ed-bfe3-dac502259ad0.png

相比其它两者,它生成的图像既具有高语义保真度,分辨率也很高。

5f3857d4-bb5f-11ed-bfe3-dac502259ad0.png

还有用GAN重建人脸图像的

看完这项研究,已经有网友想到了细思极恐的东西:

这个AI虽然只是复制了“眼睛”所看到的东西。

但是否会有一天,AI能直接从人脑的思维、甚至是记忆中重建出图像或文字?

5f824506-bb5f-11ed-bfe3-dac502259ad0.png

“语言的用处不再存在了”

5fe2c048-bb5f-11ed-bfe3-dac502259ad0.png

于是有网友进一步想到,如果能读取记忆的话,那么目击证人的证词似乎也会变得更可靠了:

6010ead6-bb5f-11ed-bfe3-dac502259ad0.png

还别说,就在去年真有一项研究基于GAN,通过fMRI收集到的大脑信号重建看到的人脸图像:

60299bb2-bb5f-11ed-bfe3-dac502259ad0.png

不过,重建出来的效果似乎不怎么样……

604c0dfa-bb5f-11ed-bfe3-dac502259ad0.png

显然,在人脸这种比较精细的图像生成上,AI“读脑术”还有很长一段路要走。

对于这种大脑信号重建的研究,也有网友提出了质疑。

例如,是否只是AI从训练数据集中提取出了相似的数据?

6065a292-bb5f-11ed-bfe3-dac502259ad0.png

对此有网友回复表示,论文中的训练数据集和测试集是分开的:

61890740-bb5f-11ed-bfe3-dac502259ad0.png

作者们也在项目主页中表示,代码很快会开源。可以先期待一下~

6228f7b4-bb5f-11ed-bfe3-dac502259ad0.png

作者介绍

本研究仅两位作者。

一位是2021年才刚刚成为大阪大学助理教授的Yu Takagi,他主要从事计算神经科学和人工智能的交叉研究。

最近,他同时在牛津大学人脑活动中心和东京大学心理学系利用机器学习技术,来研究复杂决策任务中的动态计算。

另一位是大阪大学教授Shinji Nishimoto,他也是日本脑信息通信融合研究中心的首席研究员。

研究方向为定量理解大脑中的视觉和认知处理,谷歌学术引用3000+次。

那么,你觉得这波AI重建图像的效果如何?

审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 成像技术
    +关注

    关注

    4

    文章

    305

    浏览量

    31882
  • 人工智能
    +关注

    关注

    1809

    文章

    49169

    浏览量

    250773

原文标题:CVPR 2023 | 大脑视觉信号被Stable Diffusion复现成图像!"AI读脑术"来了!

文章出处:【微信号:CVer,微信公众号:CVer】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    图像信号分析处理卡设计原理图:536-基于FMC接口的XCZU7EV 通用PCIe卡 视觉处理卡 工业控制卡

    XCZU7EV 通用PCIe卡 , 图像信号分析处理卡 , 视觉处理卡 , 工业控制卡 , 存储扩展卡
    的头像 发表于 07-08 10:47 ?759次阅读
    <b class='flag-5'>图像</b><b class='flag-5'>信号</b>分析处理卡设计原理图:536-基于FMC接口的XCZU7EV 通用PCIe卡 <b class='flag-5'>视觉</b>处理卡 工业控制卡

    是德N5173B信号发生器在EMC测试中的干扰信号精准复现技巧

    具备宽频段覆盖、高精度调制和灵活的信号生成能力,成为EMC实验室中复现干扰信号的重要工具。掌握其使用技巧,可有效提升测试的精准性和效率。 ? 二、干扰信号精准
    的头像 发表于 06-03 16:09 ?224次阅读
    是德N5173B<b class='flag-5'>信号</b>发生器在EMC测试中的干扰<b class='flag-5'>信号</b>精准<b class='flag-5'>复现</b>技巧

    工业相机图像采集卡:机器视觉的核心枢纽

    工业相机图像采集卡是用于连接工业相机与计算机的关键硬件设备,主要负责将相机输出的图像信号转换为计算机可处理的数字信号,并实现高速、稳定的数据传输。它在工业自动化、机器
    的头像 发表于 05-21 12:13 ?239次阅读
    工业相机<b class='flag-5'>图像</b>采集卡:机器<b class='flag-5'>视觉</b>的核心枢纽

    基于LockAI视觉识别模块:C++图像的基本运算

    图像处理中,理解图像的基本操作是掌握计算机视觉技术的关键。本文章将介绍基于LockAI视觉识别模块下OpenCV中图像的基本运算方法,包括
    的头像 发表于 05-06 16:20 ?273次阅读
    基于LockAI<b class='flag-5'>视觉</b>识别模块:C++<b class='flag-5'>图像</b>的基本运算

    基于LockAI视觉识别模块:C++图像采集例程

    本文主要演示如何使用LockAI视觉识别模块进行视频流的读取,同时使用Edit模块进行图像传输。基础知识讲解1.1OpenCV简介OpenCV(OpenSourceComputerVisionLibra
    的头像 发表于 04-30 18:23 ?286次阅读
    基于LockAI<b class='flag-5'>视觉</b>识别模块:C++<b class='flag-5'>图像</b>采集例程

    广立微YMS系统助力思特威CMOS图像传感器良率提升

    CMOS图像传感器(Complementary Metal-Oxide-Semiconductor Image Sensor 简称CIS)是一种将光信号转换为电信号,并进一步处理为数字图像
    的头像 发表于 04-08 13:50 ?572次阅读
    广立微YMS系统助力思特威CMOS<b class='flag-5'>图像</b>传感器良率提升

    ?Diffusion生成式动作引擎技术解析

    Diffusion生成式动作引擎 Diffusion生成式动作引擎是一种基于扩散模型(Diffusion Models)的生成式人工智能技术,专注于生成连续、逼真的人类动作或动画序列。这类引擎在游戏
    的头像 发表于 03-17 15:14 ?1943次阅读

    使用OpenVINO GenAI和LoRA适配器进行图像生成

    借助生成式 AI 模型(如 Stable Diffusion 和 FLUX.1),用户可以将平平无奇的文本提示词转换为令人惊艳的视觉效果。
    的头像 发表于 03-12 13:49 ?949次阅读
    使用OpenVINO GenAI和LoRA适配器进行<b class='flag-5'>图像</b>生成

    安装OpenVINO?工具包稳定扩散后报错,怎么解决?

    :\\stable-openvino2\\stable-diffusion-webui-master\\venv\\lib\\site-packages\\diffusers\\models
    发表于 03-05 06:56

    如何开启Stable Diffusion WebUI模型推理部署

    如何开启Stable Diffusion WebUI模型推理部署
    的头像 发表于 12-11 20:13 ?595次阅读
    如何开启<b class='flag-5'>Stable</b> <b class='flag-5'>Diffusion</b> WebUI模型推理部署

    图像信号处理板设计原理图:531-基于3U PXIe 的ZU7EV的通用主控板

    ZU7EV板卡 , 雷达信号处理 , 视觉处理卡 , 3U PXIe , 图像信号分析
    的头像 发表于 09-30 11:27 ?782次阅读
    <b class='flag-5'>图像</b><b class='flag-5'>信号</b>处理板设计原理图:531-基于3U PXIe 的ZU7EV的通用主控板

    图像采集卡不断发展和改进,为视觉系统提供更大的价值

    图像采集卡最初是为了从模拟机器视觉相机中获取原始图像而开发的,人们曾一度预计该技术将被直接连接到电脑的技术所取代。然而,经验却并非如此。图像采集卡不断发展和改进,为
    的头像 发表于 09-30 11:10 ?531次阅读
    <b class='flag-5'>图像</b>采集卡不断发展和改进,为<b class='flag-5'>视觉</b>系统提供更大的价值

    图像采集卡:增强视觉数据采集

    图像采集卡介绍:在视觉数据采集领域,图像采集卡在捕获和处理来自各种来源的图像或视频方面发挥着关键作用。在本文中,我们将深入探讨图像采集卡的世
    的头像 发表于 09-24 11:06 ?728次阅读
    <b class='flag-5'>图像</b>采集卡:增强<b class='flag-5'>视觉</b>数据采集

    示波器的波形存储与复现,再也不怕瞬时信号抓不住了

    示波器和虚拟USB示波器来进行。Chrent台式示波器的波形存储与复现使用信号源模拟一个信号。通过BNC线将这个信号连接到示波器上。在示
    的头像 发表于 09-05 08:06 ?3529次阅读
    示波器的波形存储与<b class='flag-5'>复现</b>,再也不怕瞬时<b class='flag-5'>信号</b>抓不住了

    机器视觉在焊接质量检测中的应用

    的可能性。今天跟随创想智控小编一起了解机器视觉在焊接质量检测中的应用。 1. 机器视觉原理 机器视觉是一种利用计算机技术对图像进行分析和处理的技术。它通过
    的头像 发表于 08-13 16:33 ?656次阅读