0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

始于硬件却也被硬件所限的深度学习

lPCU_elecfans ? 来源:未知 ? 2022-12-05 07:10 ? 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

电子发烧友网报道(文/周凯扬)深度学习硬件在AI时代已经引领了不少设计创新,无论是简单的边缘推理,还是大规模自然语言模型的训练,都有了性能上的突破。作为业内在深度学习上投入最多的公司之一,英伟达无疑是这类硬件的领军者。
近日,在伯克利大学的电子工程与电脑科学学院研讨会上,英伟达的首席科学家、研究部门高级副总裁同时兼任该校副教授的Bill Dally,分享了从他这个从业人士看来,发生在深度学习硬件上的一些趋势。

硬件成为限制

AI的浪潮其实早在20世纪就被多次掀起过,但真正成为人们不可忽视的巨浪,还是这十几年的事,因为这时候AI有了天时地利人和:算法与模型,大到足够训练这些模型的数据集,以及能在合理的时间内训练出这些模型的硬件。
但从带起第一波深度学习的AlexNet,到如今的GPT-3和Turing NLG等,人们不断在打造更大的数据集和更大的模型,加上大语言模型的兴起,对训练的要求也就越来越高。可在摩尔定律已经放缓的当下,训练时间也在被拉长。

基于Hopper架构的H100 GPU / 英伟达
以英伟达为例,到了帕斯卡这一代,他们才真正开始考虑单芯片的深度学习性能,并结合到GPU的设计中去,所以才有了Hopper这样超高规格的AI硬件出现。但我们在训练这些模型的时候,并没有在硬件规模上有所减少,仍然需要用到集成了数块Hopper GPU的DGX系统,甚至打造一个超算。很明显,单从硬件这一个方向出发已经有些不够了,至少不是一个“高性价比”的方案。

软硬件全栈投入

硬件推出后,仍要针对特定的模型进行进一步的软件优化,因此即便是同样的硬件,其AI性能也会在未来呈现数倍的飞跃。从上个月的MLPerf的测试结果就可以看出,在A100 GPU推出的2.5年内,英伟达就靠软件优化实现了最高2.5倍的训练性能提升,当然了最大的性能提升还是得靠H100这样的新硬件来实现。
Bill Dally表示这就是英伟达的优势所在,虽然这几年投入进深度学习硬件的资本不少,但随着经济下行,不少投资者已经丧失了信心,所以不少AI硬件初创公司都没能撑下去,他自己也在这段时间看到了不少向英伟达投递过来的简历。
他认为不少这些公司都已经打造出了自己的矩阵乘法器,但他们并没有在软件上有足够的投入,所以即便他们一开始给出的指标很好看,也经常拿英伟达的产品作为对比,未来的性能甚至比不过英伟达的上一代硬件,更别说Hopper这类新产品了。

加速器

相较传统的通用计算硬件,加速器在深度学习上明显要高效多了,因为加速器往往都是作为一种专用单元存在的,比如针对特定的数据类型和运算。加速器可以在一个运算周期内就完成通常需要花上10秒或100秒才能完成的工作量,效率最高可提升1000倍。

A100和H100的MLPerf跑分 / 英伟达
当然了要追求纯粹的性能提升,而不是效率提升的话,这些加速器也可以采用大规模并行设计,比如典型的32x32矩阵乘法单元,同时运行的运算有了千百倍的提升。加速器在内存设计上也更具有优势,比如针对特定的数据结构和运算,选择优化过的高带宽低能耗内存,同时尽可能使用本地内存,减少数据搬运来控制开销。
对于英伟达来说,他们在加速器上的研究更像是为GPU准备的试验田,一旦有优秀的成果出现,这些加速器就会成为GPU上的新核心。

小结

从Bill Dally的分享中,我们可以看出英伟达这样的巨头在深度学习上选择的技术路线,以及他们为何能在众多初创公司涌现、大厂入局的当下岿然不动的底气。这并不是说深度学习硬件的道路只有这一条,类脑芯片等技术的出现也提供了新的破局机会,但有了前人经验的借鉴后,在兼顾性能、数值精度、模型的同时,还是得在软件上下大功夫才行。

声明:本文由电子发烧友原创,转载请注明以上来源。如需入群交流,请添加微信elecfans999,投稿爆料采访需求,请发邮箱huangjingjing@elecfans.com。


更多热点文章阅读

  • 最高涨幅25%,AMD宣布上调Xilinx FPGA售价,供应短缺让TOP 2厂商受益
  • 时隔20年,莫斯科人汽车再次复产,背后全是中国车企的影子
  • 欧盟超430亿欧元投向芯片领域,对上游半导体设备有何影响?
  • 24W以下电源,新型自供电BJT方案将全面取代其他方案?
  • 车用芯片不再缺?芯片大厂表示有所缓解,真实情况究竟如何呢?


原文标题:始于硬件却也被硬件所限的深度学习

文章出处:【微信公众号:电子发烧友网】欢迎添加关注!文章转载请注明出处。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

原文标题:始于硬件却也被硬件所限的深度学习

文章出处:【微信号:elecfans,微信公众号:电子发烧友网】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    电子硬件工程师如何从零开始学习?(文末免费分享从零开始学习资料)

    经常有用户咨询,如何学习和提升电子硬件能力,有没有适合小白学习的资料等等;电子硬件工程师是一个结合理论、实践和创新能力的职业,需要掌握电路设计、元器件选型、PCB设计、嵌入式系统、测试
    的头像 发表于 06-04 07:36 ?817次阅读
    电子<b class='flag-5'>硬件</b>工程师如何从零开始<b class='flag-5'>学习</b>?(文末免费分享从零开始<b class='flag-5'>学习</b>资料)

    硬件:我就说还得靠我

    硬件
    扬兴科技
    发布于 :2025年05月26日 18:27:09

    硬件原理图学习笔记

    这一个星期认真学习硬件原理图的知识,做了一些笔记,方便以后查找。硬件原理图分为三类1.管脚类(gpio)和门电路类输入输出引脚,上拉电阻,三极管与门,或门,非门上拉电阻:正向标志作用,给悬空的引脚
    的头像 发表于 04-30 18:40 ?948次阅读
    <b class='flag-5'>硬件</b>原理图<b class='flag-5'>学习</b>笔记

    硬件工程师学习路线,不吹牛规划

    心理,才能触发你的好奇心,去学下去,这也是成为工程师的首要条件,但这是远远不够,还需要一条可供参考的学习路线,再加上99%的汗水和1%的灵感才可以。硬件设计,可以
    的头像 发表于 04-16 19:33 ?1073次阅读
    <b class='flag-5'>硬件</b>工程师<b class='flag-5'>学习</b>路线,不吹牛规划

    拥有一颗热爱学习硬件开发的决心!

    有没有大佬能教教硬件开发设计和pcb,目前转行在,想学习硬件工程师这块!
    发表于 04-02 14:46

    移远通信×扣子:AI与硬件深度融合,加速AI智能体高效开发新生态

    3月22日,由扣子Coze与火山引擎联合主办的“扣子AI工坊·硬件专场”在深圳、北京、杭州、成都四城圆满落幕。作为Coze与火山引擎的重要合作伙伴,移远通信受邀全程深度参与本次活动,携两大AI创新
    的头像 发表于 03-22 20:37 ?660次阅读
    移远通信×扣子:AI与<b class='flag-5'>硬件</b><b class='flag-5'>深度</b>融合,加速AI智能体高效开发新生态

    智算中心的核心硬件是什么?

    与各种AI算法协同工作,满足对算力的极高需求。当前主流的AI加速计算芯片包括:1、GPU(图形处理器)GPU是智算中心的算力担当,其强大的并行计算能力使其在深度学习
    的头像 发表于 02-17 14:42 ?1292次阅读
    智算中心的核心<b class='flag-5'>硬件</b>是什么?

    如何快速学习硬件电路

    对于想要学习硬件电路的新手来说,一开始可能感到有些困难,但只要掌握了正确的学习方法和技巧,就能够快速地成为一名优秀的硬件电路工程师。 首先,新手需要了解基本的电路知识,例如电阻、电容、
    的头像 发表于 01-20 11:11 ?1381次阅读
    如何快速<b class='flag-5'>学习</b><b class='flag-5'>硬件</b>电路

    学习硬件的第一节课:学习读懂原理图

    学习硬件的第一节课:学习读懂原理图 读懂原理图对嵌入式软件工程师和程序员尤为重要。在深入细节之前请注意,对所有的嵌入式设计人员来说、能懂得硬件工程师创建和使用的来描述其
    的头像 发表于 12-16 16:04 ?2779次阅读
    <b class='flag-5'>学习</b><b class='flag-5'>硬件</b>的第一节课:<b class='flag-5'>学习</b>读懂原理图

    NPU在深度学习中的应用

    设计的硬件加速器,它在深度学习中的应用日益广泛。 1. NPU的基本概念 NPU是一种专门针对深度学习算法优化的处理器,它与传统的CPU和G
    的头像 发表于 11-14 15:17 ?2211次阅读

    pcie在深度学习中的应用

    深度学习模型通常需要大量的数据和强大的计算能力来训练。传统的CPU计算资源有限,难以满足深度学习的需求。因此,GPU(图形处理单元)和TPU(张量处理单元)等专用
    的头像 发表于 11-13 10:39 ?1508次阅读

    GPU深度学习应用案例

    能力,可以显著提高图像识别模型的训练速度和准确性。例如,在人脸识别、自动驾驶等领域,GPU广泛应用于加速深度学习模型的训练和推理过程。 二、自然语言处理 自然语言处理(NLP)是深度
    的头像 发表于 10-27 11:13 ?1624次阅读

    FPGA加速深度学习模型的案例

    FPGA(现场可编程门阵列)加速深度学习模型是当前硬件加速领域的一个热门研究方向。以下是一些FPGA加速深度学习模型的案例: 一、基于FPG
    的头像 发表于 10-25 09:22 ?1365次阅读

    FPGA做深度学习能走多远?

    并行计算的能力,可以在硬件层面并行处理大量数据。这种并行处理能力使得 FPGA 在执行深度学习算法时速度远超传统处理器,能够提供更低的延迟和更高的吞吐量,从而加速模型训练和推理过程,满足实时性要求较高
    发表于 09-27 20:53

    如何帮助孩子高效学习Python:开源硬件实践是最优选择

    家长们常常担心孩子在学习Python时所面临的挑战,如复杂性、兴趣保持、学习进度和可用资源。对于希望有效教授孩子Python的家长而言,了解硬件的作用至关重要,因为结合硬件项目的Pyt
    的头像 发表于 09-06 09:49 ?750次阅读