0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

无氟SEI实现高度可逆的金属钠负极

清新电源 ? 来源:清新电源 ? 作者:然 ? 2022-11-18 09:20 ? 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

01

研究背景

金属钠负极的低还原电位和高理论容量使其有望实现高能量密度金属钠电池(SMBs),但其商业化面临诸多挑战,这些挑战与电解质相容性和负极界面现象相关。

与金属锂负极不同,在使用传统碳酸盐电解质时,金属钠负极的固体电解质界面(SEI)稳定性较差。这些电解质的自发化学还原导致不稳定的钝化膜,反复暴露负极到大量电解质溶液中,通过消耗活性材料加速电池失效。

与锂类似,金属钠负极也表现出枝晶形貌,导致长循环稳定性较差。此外,这些枝晶还可能导致电池自发短路和安全问题。因此,需要对电解质进行优化,以实现稳定的钠金属负极。

02

成果简介

近日,阿贡国家实验室Christopher Johnson教授和加州大学Vincent Lavallo教授Angew上发表了题为A Carboranyl Electrolyte Enabling Highly Reversible Sodium Metal Anodes via a “Fluorine-Free”SEI”的论文。该论文提出了一种采用 [HCB11H11]1-(1)作为阴离子的新型无氟电解质。

用这种电解质组装的Na对称电池在2.0 mA cm-2下表现出极低的过电位,为0.032 V,在半电池构型中具有99.5%的高库仑效率。循环后电极表面没有钠枝晶成核,并形成了稳定的无氟SEI。

03

研究亮点

(1)本工作首次报告了一种非氟化弱配位阴离子(WCAs),它使金属钠负极的循环库伦效率高达99.5%,具有优异的长循环稳定性。

(2)电解质表征结果显示,溶剂分离离子对和阴离子的异常分布决定了电解质的原位溶剂化结构。电极表面表征显示,在长循环过程中没有枝晶状金属钠成核。钝化膜的XPS表征显示,SEI主要由有机物种组成,含硼物种的数量可以忽略不计。

(3)电解质原位溶剂化结构的表征证明,阴离子的还原稳定性以及1的弱配位性,是获得高可逆金属钠负极的关键。

04

图文导读

[Na]+[HCB11H11]-通过HNMe+1与NaH在四氢呋喃中反应得到(图1a)。与典型的盐复分解方法相比,这里采用的合成策略只产生气态的副产物,以及Na1。Na1在二乙二醇二甲醚(G2)中的溶解度限制在~0.93 M,不能制备1.0 M标准电解质溶液。因此,本研究制备了0.9 M Na1溶液,得到Na1/G2作为电解质(图1b)。

通过同步辐射小角X射线散射(SAXS)实验与分子动力学模拟,对Na1/G2的原位溶剂化结构进行严格的表征。在高q区观察到的两个峰表明,阴离子进入两个不同的环境。多数阴离子-阴离子分隔距离为6.04 ?和11.5 ?(图1c, d)。第一个峰(6?)对应于最接近的阴离子,它们之间没有溶剂,导致形成小的阴离子-阴离子聚集体。

由于Na1在0.9M二乙二醇二甲醚溶液中均匀分布,第二个峰(12?)来自于阴离子的长程相互作用(图1e)。在计算模型中发现,Na1/G2含有<1%的Na+-碳硼烷接触离子对(CIP)。Na1/G2中的Na+溶剂化结构倾向于形成丰度大于99%的溶剂分离离子对(SSIP)。

电解质的固态晶体结构显示,饱和Na+络合物[Na(G2)2]+与碳硼酰B-H之间最近的相互作用距离为4.945 ?,说明Na1/G2中离子显著解离(图1b)。因此,电解质完全由离散的[Na(G2)n]+络合物和碳硼烷阴离子组成,它们在溶液中分布不均匀。

1d83f294-66d7-11ed-8abf-dac502259ad0.png

图 1、(a)通过HNMe3+1与NaH的脱质子化,合成和制备Na1。(b)通过单晶X射线衍射分析确定的Na1/G2分子结构。(c)SAXS光谱表征了Na1/G2中原位阴离子-阴离子分离和阴离子团簇的存在。(d)分子动力学系统中阴离子分散的照片和(e)阴离子-阴离子分离的放大图像

图2显示,含Na1/G2的Na-Na电池在0.5 mA cm-2下显示出稳定的<10 mV极化。从循环开始到超过1000小时,该电位一直保持稳定,这表明Na1/G2的自发化学还原足以稳定地生成SEI(图2)。同样,Na-Na电池在1.0和2.0 mA cm-2下也能稳定循环,极化电压分别为15 mV和32 mV(图2)。

1d98a39c-66d7-11ed-8abf-dac502259ad0.png

图 2、不同电流密度和1.0 mAh cm-2面积容量下,采用Na1/G2电解质组装的Na-Na对称电池的循环性能。

接下来,组装了含Na1/G2的Na-Cu和Na-Al半电池,以评估裸集流体上的钠电镀和剥离过程。Na-Cu半电池的首圈库仑效率为96.5%,第二圈循环库仑效率为99.2%,这表明几乎不需要对电极表面进行修饰就可以实现高效的金属电沉积(图3a)。在前100个循环中,平均库仑效率保持在99.8%,在300个循环后,平均库仑效率保持在99.5%。

与对称电池相似,从第一个循环开始,铜电极上钠沉积和剥离表现出低的电压极化(图3b)。长循环后,电压极化逐渐增加,从第一圈的30.5 mV增加到300圈的45.2 mV。

这可能是由于铜电极上重复形成新的钠金属,G2的化学还原,以及溶剂消耗导致的电池内阻增加。沉积后拆卸的半电池显示出均匀的纯金属钠层,具有金属光泽,表明电解质和沉积的金属钠之间发生了最小的副反应(图3a插图)。

1db43c6a-66d7-11ed-8abf-dac502259ad0.png

图 3、(a)运行超过300次后,使用Na1/G2的Na-Cu半电池的库仑效率(CE)。Na-Cu半电池中原始铜电极和沉积1.0 mAh·cm-2Na在铜基底上后的照片,下面是对应电极表面的扫描电镜图像。(b)在0.5 mA·cm-2@1.0 mAh·cm-2下,含Na1/G2的Na-Cu半电池电压曲线。(c)Na-Al半电池的库伦效率和(d)含有Na1/G2和NaPF6/G2的Na-Al半电池电压曲线。

在Na1/G2组装的Na-Al半电池中观察到极高的库仑效率(98.6%),而在NaPF6/G2电解液中,电池放电容量不稳定,循环稳定性差(图3c),这表明化学惰性的Na1/G2与裸铝电极具有较高的兼容性,尽管NaPF6/G2在循环过程中表现出略低的过电位(图3d)。相比之下,1的高化学和电化学稳定性消除了Al和电解液之间的有害副反应。

接下来,通过扫描电子显微镜(SEM)和能量色散X射线能谱(EDS)映射来表征金属钠在Na1/G2中的成核过程,以揭示这种高度可逆行为的起源。研究了金属钠在不同荷电状态(SOC)下的成核过程,结果显示该过程没有枝晶状钠沉积(图4a-c)。在20%荷电状态下(0.2mAh cm-2),铜电极表面有均匀的金属钠沉积薄层(图4b, d)。在满电状态下(1.0mAhcm-2),可以观察到同样均匀的金属钠沉积(图4c, f)。

1de8a9fa-66d7-11ed-8abf-dac502259ad0.png

图 4、Na-Cu半电池在不同荷电状态下的SEM图像和相应的EDS映射。(a, d)0% SOC,原始Cu电极(b, e)20% SOC, 0.2 mAh cm-2和(c, f)100% SOC, 1.0 mAh cm-2。(g)从拆卸的Na-Cu半电池中回收的钠金属负极XPS光谱。

表面XPS分析显示,沉积的Na表面上的物质主要由含有Na-O, C-O, C-C和C-H的物种组成(图4g)。在表面检测到非常少量(约2.8%)的含硼物种,这与与原始1相关的B-H结合能相对应,表明簇的完整性保持。

05

总结与展望

本工作首次报告了一种非氟化弱配位阴离子(WCAs),并制备了Na1/G2电解液,它使金属钠负极的循环库伦效率高达99.5%,具有优异的长循环稳定性。采用Na1/G2的电池高度可逆,这可归因于多种因素,包括原位弱离子配位、无枝晶的Na金属成核以及不含阴离子还原产物的SEI。Na-Cu和Na-Al电池的高库伦效率得益于1的化学稳定性,以及仅由二乙二醇二甲醚化学还原形成的SEI。此外,Na1/G2的高热稳定性和导电性使其能够在常温下运行。

06

文献链接

A Carboranyl Electrolyte Enabling Highly Reversible Sodium Metal Anodes via a “Fluorine-Free” SEI.(Angewandte Chemie International Edition, 2022, DOI:10.1002/anie.202208158)

原文链接

https://doi.org/10.1002/anie.202208158






审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • soc
    soc
    +关注

    关注

    38

    文章

    4415

    浏览量

    223657
  • 电池电压
    +关注

    关注

    0

    文章

    210

    浏览量

    12065
  • EDS
    EDS
    +关注

    关注

    0

    文章

    102

    浏览量

    11979
  • 固体电解质
    +关注

    关注

    0

    文章

    46

    浏览量

    8595

原文标题:阿贡国家实验室Angew:“无氟”SEI实现高度可逆的金属钠负极

文章出处:【微信号:清新电源,微信公众号:清新电源】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    旭派动力斩获“电产业化先锋奖”:硬核实力领跑新赛道!

    近日,在备受瞩目的2025中国电科技与产业发展大会上,浙江旭派动力科技有限公司(以下简称“旭派动力”)凭借其在电池产业化领域的卓越贡献与领先实践,荣膺大会授予的“电产业化先锋奖”!这份沉甸甸
    的头像 发表于 08-11 14:14 ?246次阅读
    旭派动力斩获“<b class='flag-5'>钠</b>电产业化先锋奖”:硬核实力领跑新赛道!

    锂离子电池负极材料的挑战与硅基负极的潜力

    我国锂离子电池负极材料市场规模随着新能源汽车的兴起及锂离子电池等产品的发展增长迅速,目前已有百亿规模。目前商业上能够实现大规模应用的负极材料是石墨,其实际比容量的发挥已接近理论值(372mAh/g
    的头像 发表于 08-05 17:55 ?88次阅读
    锂离子电池<b class='flag-5'>负极</b>材料的挑战与硅基<b class='flag-5'>负极</b>的潜力

    汽车上云的不可逆之路

    新四化大趋势下,汽车上云之路已不可逆
    的头像 发表于 04-18 09:59 ?288次阅读

    SEI实现BiSS-C从机协议,发送TIMEOUT期间CDM如何接收?

    SEI实现BiSS-C从机协议,发送TIMEOUT期间CDM如何接收?
    发表于 04-07 11:09

    HPM6E00的SEI使用讨论

    虽然SEI的SDK覆盖了大部分协议,但看寄存器描述的时候还是有个别配置不知道怎么用,比如SYNC_POINT,TXD_POINT这些POINT是根据什么来计算的
    发表于 03-19 14:53

    水系电池金属负极腐蚀问题综述

    ? 研究背景 水系金属电池(AMB)直接采用金属作为负极(如Zn、Al、Mg等),不仅在大规模储能领域,在可穿戴、生物相容性等应用方面也具有优越性。阳极侧的电化学基于金属
    的头像 发表于 02-18 14:37 ?849次阅读
    水系电池<b class='flag-5'>金属</b><b class='flag-5'>负极</b>腐蚀问题综述

    哪些电容器需要区分正负极

    CBB22电容也叫金属化聚丙烯薄膜电容器,它是最常用一种薄膜电容器,出货量最大。像电解电容这样的插件电容器在使用的时候,一定要区别正负极,cbb22电容分正负极吗?
    的头像 发表于 02-08 11:08 ?918次阅读

    p-π共轭有机界面层助力金属电池稳定运行

    研究背景 由于天然丰度高、电位适中、理论容量高(1166 mAh g-1),金属负极被认为是有前途的下一代可充电池负极材料的有力候选者。然而,在传统有机电解液中形成的固体电解质界面(
    的头像 发表于 01-14 10:43 ?720次阅读
    p-π共轭有机界面层助力<b class='flag-5'>钠</b><b class='flag-5'>金属</b>电池稳定运行

    LDC1314检测高度主要取决于什么,如何才能提高检测高度

    打算用LDC1314作金属传感器——固定高度(4cm左右),检测金属铝膜面积的变化。但我无论怎么改寄存器,检测高度都只能在5mm以下才能有明显变化。而我发现有人用LDC1000能有5
    发表于 01-02 07:28

    筛选理想的预锂化正极应用于无负极金属锂电池

    研究背景无负极金属电池(AF-LMBs)在初始组装过程中移除了负极侧的锂,可以实现电芯层面的能量密度最大化,与此同时还具备成本和存储优势。然而,在没有
    的头像 发表于 12-24 11:07 ?1173次阅读
    筛选理想的预锂化正极应用于无<b class='flag-5'>负极</b><b class='flag-5'>金属</b>锂电池

    多功能高熵合金纳米层实现长寿命无负极金属电池

    论文简介 本研究报道了一种新型的无负极金属电池(AFSMBs),通过在商业铝箔上构建一层由高熵合金(NbMoTaWV)组成的纳米层,显著提高了电池的循环稳定性和
    的头像 发表于 12-18 10:29 ?1880次阅读
    多功能高熵合金纳米层<b class='flag-5'>实现</b>长寿命无<b class='flag-5'>负极</b><b class='flag-5'>钠</b><b class='flag-5'>金属</b>电池

    通过电荷分离型共价有机框架实现对锂金属电池固态电解质界面的精准调控

    (-3.04 V vs SHE),被认为是次世代电池的最优选择。然而,锂金属负极的实际应用面临诸多挑战,其中最关键的问题是锂枝晶的生长和副反应的发生。这些问题不仅会导致电池寿命急剧下降,还会引发严重的安全隐患,如短路和热失控。 固态电解质界面(
    的头像 发表于 11-27 10:02 ?1058次阅读
    通过电荷分离型共价有机框架<b class='flag-5'>实现</b>对锂<b class='flag-5'>金属</b>电池固态电解质界面的精准调控

    宁德时代第二代电池有望2025年面世

    在11月17日的世界青年科学家峰会上,宁德时代首席科学家吴凯披露宁德时代第二代电池有望于2025年面世;? ?宁德时代第二代电池最大的特点是抗寒;在零下40度的依然可以正常放电,严寒地区新能源
    的头像 发表于 11-18 16:18 ?1134次阅读

    全固态锂金属电池的锂阳极夹层设计

    全固态锂金属电池(ASSLB)由于其高能量密度和高安全性而引起了人们的强烈兴趣,锂金属被认为是一种非常有前途的负极材料。然而,由于锂金属的高反应活性,锂
    的头像 发表于 10-31 13:45 ?762次阅读
    全固态锂<b class='flag-5'>金属</b>电池的锂阳极夹层设计

    一种新型的金属电池负极稳定化策略

    金属电池因其高理论能量密度和低氧化还原电位而具有广泛的应用前景。然而,金属阳极与电解液之间不可避免的副反应、
    的头像 发表于 10-28 09:36 ?1158次阅读
    一种新型的<b class='flag-5'>钠</b><b class='flag-5'>金属</b>电池<b class='flag-5'>负极</b>稳定化策略