0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

如何利用FMEDA进行硬件架构度量及随机失效PMHF的计算

工程师邓生 ? 来源:AUTO世代 ? 作者:AUTO GENERATION ? 2022-09-29 16:20 ? 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

01

FMEDA步骤

FMEDA(Failure Modes Effects and Diagnostic Analysis) 是一种评估系统安全架构和实施的强大方法,多用于硬件定量分析。

和FMEA定性分析不同,FMEDA在FMEA 自下而上的方法论基础上增加了对硬件故障定量化的评估内容,包括模式失效率(Failure rate)、故障模式占比(Failure mode distribution)和对应的安全机制诊断覆盖率(Diagnostic coverage),对FMEA进行扩展从而可以完成定量分析,是计算硬件概率化度量指标的有效手段,其具体流程如下图所示:

6d235144-3ee8-11ed-9e49-dac502259ad0.png


具体而言,包括以下几个步骤:

步骤1: 计算失效率

首先,需要根据系统硬件架构,罗列所有硬件单元,为了方便分析和计算,可以对硬件单元按照类型进行分组。

然后,根据行业公认的标准(SN29500, IEC 62380),历史或测试数据,查询各硬件单元失效模式以及对应的失效率分布。此过程可以采用手动模式,或者采用利用相关软件,输入系统硬件单元,进行自动化查询及计算。

例如,控制器硬件ALU算术逻辑单元:

它的失效率λ=0.348 FIT,即该电阻在10^9 h内平均存在0.348次失效。

它存在三种失效模式: FM1, FM2, FM3。

三种失效模式对应的失效分布比例:FM1->25%,FM2->25%,FM3->50%。

6d78edfc-3ee8-11ed-9e49-dac502259ad0.png


步骤2: 识别故障模式

对步骤1中列出的硬件单元进行安全分析,根据故障分析流程图,确定其故障模式是否和功能安全相关以及故障的类型:

6dad437c-3ee8-11ed-9e49-dac502259ad0.png

如果和功能安全无关,则为安全无关的安全故障。

如果和功能安全相关,则需要进一步分析,确定其故障的类型,包括单点故障或双点故障等(和功能安全相关的三点及以上的故障也属于安全故障),以及是否存在相应的安全机制。

具体故障类型定义及区别见08篇,不再赘述。

不是所有硬件单元的故障都会导致安全目标的违背,为了方便有效识地识别和功能安全相关的故障以及故障类型,可以采用FTA安全分析方法,对不同安全目标SG进行自上而下的安全分析,识别出违反安全目标的底层事件,根据不同底层事件和安全目标之间的关系,即''与门''和''或门'',就可以基本识别出不同故障类型。

例如,进行最小割集分析,级数为1的最小割集对应的底层事件就是单点故障,级数为2则为双点故障等等,可以由软件直接得到。

当然,也可以将步骤1得到硬件组件的失效率作为FTA底层事件失效数据的输入,利用FTA分析工具,进行故障的识别和后续硬件失效相关的度量计算。

步骤3: 计算诊断覆盖率

根据识别得到的硬件单元实施的安全机制,确定诊断覆盖率数值,在ISO 26262-5:2018附录D中,提供了硬件系统不同组件,包括传感器连接器模拟输入输出,控制单元等常见的安全机制以及对应的诊断覆盖率。

一般安全机制诊断覆盖率可以根据相应的公式进行计算,但过程相对比较复杂,所以多采取保守估算方式。

对于给定要素的典型安全机制的有效性,ISO 26262-5:2018附录D按照它们对所列举的故障覆盖能力进行了分类,分别为低、中或高诊断覆盖率。这些低、中或高的诊断覆盖率被分别定义为60%、90%或99%的典型覆盖水平。

6d78edfc-3ee8-11ed-9e49-dac502259ad0.png

继续以ALU为例:

针对故障模式FM2和FM3,在硬件设计中存在相应的安全机制SM1和SM2,其对应的诊断覆盖率分别为90%和60%。

以此方式,计算所有硬件单元的安全机制的诊断覆盖率。

步骤4: 计算量化指标

根据硬件架构度量指标SPFM,LFM以及随机硬件失效评估PMHF计算公式,计算相应的指标。

6df13b04-3ee8-11ed-9e49-dac502259ad0.png

6e96b9bc-3ee8-11ed-9e49-dac502259ad0.png

PMHF=∑λSPF+ ∑λRF+ ∑λDPF_det× λDPF_latent× TLifetime

具体计算公式见08篇,在此不再赘述。

步骤5: 优化设计

根据步骤4计算结果,对硬件设计可靠性进行综合评估,判定是否满足指定的ASIL等级要求,如果满足则分析结束,否则需要根据计算结果,优化硬件设计,增加新的安全机制或者采用更高诊断覆盖率的安全机制,然后再次进行计算,直至满足安全需求为止。

02

FMEDA计算实例

虽然在ISO 26262-5:2018附录中已经添加了有关硬件架构度量和随机失效率评估的实例,但由于其过程介绍相对简单,导致很多朋友仍然搞不清楚计算过程,接下来就以其中一个实例为例,介绍如何利用FMEDA进行硬件概率化度量指标的计算过程。

下图为某ECU硬件设计图,针对其安全目标:''当速度超过 10km/h 时关闭阀1的时间不得长于20 ms''。安全目标被分配为 ASIL C 等级。安全状态为:阀1打开(I61控制阀1)。

6f0a2c62-3ee8-11ed-9e49-dac502259ad0.png

针对该安全目标,罗列所有硬件组件,如下表所示,根据FMEDA步骤1至4,分别查询硬件组件失效率,失效模式及分布比例,并计算相应的硬件度量指标。

6f7d0214-3ee8-11ed-9e49-dac502259ad0.png

例如, 对于控制芯片uc而言,其失效率为100 FIT,存在两种失效模式,其分布比例各占50%,只有第一种失效模式和安全相关,第二种失效模式则无需考虑。

由于安全机制SM4的存在,对该硬件组件第一种故障的诊断覆盖率为90%,该硬件组件

单点或残余故障失效率为:

λSPF/RF=100×50%×(1-90%)=5FIT

由于安全机制SM4还能够对该故障进行探测,防止其成为潜伏故障,其诊断覆盖率为100%,则该硬件组件的双点潜伏故障失效率为:

λDPF_latent=0FIT

除单点故障,残余故障及双(多)点潜伏故障,剩余的则是可探测双点潜伏故障,则硬件组件的双(多)点故障的可探测失效率为:

λDPF_det=100×50%-λSPF/RF-λDPF_det=50-5=45FIT

依此计算所有硬件组件的相关故障失效率,并进行如下统计:

故障失效率 数值
单点或残余故障总和 ∑λSPF+∑λRF=5.48FIT
双(多)点故障潜伏失效率总和 ∑λDPF_det=12.8FIT
双(多)点故障可探测失效率总和 ∑λDPF_latent=69.822FIT
车辆生命周期 TLifetime=10000h

则该ECU硬件整体概率化度量指标计算如下:

SPFM=1-(5.48/157)=96.5%
LFM=1-[12.8/(157-5.48)]=91.6%
PMHF=∑λSPF+∑λRF+∑λDPF_det×λDPF_latent×TLifetime=5.48(FIT)+12.80(FIT)x69.822(FIT)×10000(h)=5.489FIT

根据该安全目标ASIL C,判断其可知,除SPFM没有>=97%外,其他指标均满足相应安全要求,所以该硬件设计基本满足安全目标ASIL C等级需求。当然,也可以对硬件设计进行进一步优化,提高SPFM架构度量值。





审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 传感器
    +关注

    关注

    2571

    文章

    53484

    浏览量

    772262
  • 控制器
    +关注

    关注

    114

    文章

    17355

    浏览量

    186136
  • 连接器
    +关注

    关注

    100

    文章

    15593

    浏览量

    142092
  • ALU
    ALU
    +关注

    关注

    0

    文章

    34

    浏览量

    13363

原文标题:09 - 汽车功能安全(ISO 26262)系列: 硬件开发 - 随机硬件失效量化FMEDA

文章出处:【微信号:阿宝1990,微信公众号:阿宝1990】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    【「DeepSeek 核心技术揭秘」阅读体验】第三章:探索 DeepSeek - V3 技术架构的奥秘

    数据中挖掘有价值信息,这也让我意识到架构设计对模型性能起着根本性作用,是 AI 具备强大能力的 “骨骼” 支撑。 二、流水线并行 书中关于流水线并行的内容,展现了提升计算效率的巧妙思路。简单流水线并行虽
    发表于 07-20 15:07

    知合计算:RISC-V架构创新,阿基米德系列剑指高性能计算

    在2025 RISC-V中国峰会上,知合计算处理器设计总监刘畅就高性能RISC-V处理器架构探索与实践进行了精彩分享。 在以X86和ARM为代表的处理器架构之下,RISC-V在高性能
    的头像 发表于 07-18 14:17 ?1901次阅读
    知合<b class='flag-5'>计算</b>:RISC-V<b class='flag-5'>架构</b>创新,阿基米德系列剑指高性能<b class='flag-5'>计算</b>

    AI芯片:加速人工智能计算的专用硬件引擎

    人工智能(AI)的快速发展离不开高性能计算硬件的支持,而传统CPU由于架构限制,难以高效处理AI任务中的大规模并行计算需求。因此,专为AI优化的芯片应运而生,成为推动深度学习、
    的头像 发表于 07-09 15:59 ?392次阅读

    芯片功能安全必修课 FMEDA量化分析的最佳实践

    核心导读? ? ?本文描述了集成电路硬件架构度量(SPFM、LFM)和随机失效概率度量PMHF
    的头像 发表于 07-07 14:28 ?711次阅读
    芯片功能安全必修课  <b class='flag-5'>FMEDA</b>量化分析的最佳实践

    异构计算解决方案(兼容不同硬件架构

    异构计算解决方案通过整合不同类型处理器(如CPU、GPU、NPU、FPGA等),实现硬件资源的高效协同与兼容,满足多样化计算需求。其核心技术与实践方案如下: 一、硬件
    的头像 发表于 06-23 07:40 ?320次阅读

    Arm架构何以成为现代计算的基础

    2025 年 4 月,Arm 架构迎来了问世 40 周年。这个始于英国剑桥一隅、怀揣雄心壮志的项目,如今已成为全球广泛采用的计算架构。从传感器、智能手机、笔记本电脑,到汽车、数据中心等诸多领域,有数十亿设备如今运行在 Arm
    的头像 发表于 05-20 10:02 ?657次阅读

    元器件失效分析有哪些方法?

    失效分析的定义与目标失效分析是对失效电子元器件进行诊断的过程。其核心目标是确定失效模式和失效机理
    的头像 发表于 05-08 14:30 ?510次阅读
    元器件<b class='flag-5'>失效</b>分析有哪些方法?

    揭秘云计算架构的分层奥秘

    的重要基石。那么,云计算架构究竟是如何构建的呢?今天,我们带您揭秘云计算架构的分层奥秘——边缘层、IaaS、PaaS、SaaS。
    的头像 发表于 02-26 17:41 ?657次阅读

    HPC云计算的技术架构

    HPC云计算结合了HPC的强大计算能力和云计算的弹性、可扩展性,为用户提供了按需获取高性能计算资源的便利。下面,AI部落小编带您了解HPC云计算
    的头像 发表于 02-05 14:51 ?495次阅读

    电动汽车驱动系统的控制器硬件架构

    前段时间有星友咨询,想了解电动汽车驱动系统的控制器(逆变器)硬件架构,今天我们借助Infineon主驱逆变器的硬件架构说明下这个问题。
    的头像 发表于 01-10 17:09 ?1130次阅读
    电动汽车驱动系统的控制器<b class='flag-5'>硬件</b><b class='flag-5'>架构</b>

    AM64x SKEVM的硬件架构

    电子发烧友网站提供《AM64x SKEVM的硬件架构.pdf》资料免费下载
    发表于 12-06 16:03 ?0次下载
    AM64x SKEVM的<b class='flag-5'>硬件</b><b class='flag-5'>架构</b>

    如何进行硬件调试?

    硬件调试是硬件系统设计、开发和制造过程中不可或缺的一环,旨在对可能出现的问题进行分析和解决。以下是进行硬件调试的一般步骤和方法: 一、准备阶
    的头像 发表于 11-10 10:17 ?2463次阅读
    如何<b class='flag-5'>进行</b><b class='flag-5'>硬件</b>调试?

    电阻失效模式总结

    电阻器是电子电路中不可或缺的元件,它通过限制电流流动来维持电路的稳定。然而,电阻器也可能因为各种原因而失效,影响电路的正常工作。本文将对电阻器的失效模式进行总结,以帮助工程师和技术人员更好地理解和预防这些
    的头像 发表于 10-27 10:18 ?1001次阅读
    电阻<b class='flag-5'>失效</b>模式总结

    【「大模型时代的基础架构」阅读体验】+ 未知领域的感受

    再到大模型云平台的构建,此书都有提及和讲解,循序渐进,让读者可以由点及面,由面到体的来认识大数据模型的体系架构。 前言中,作者通过提出几个问题来引导读者阅读思考——分布式AI计算依赖哪些硬件特性
    发表于 10-08 10:40

    基于 DSP5509 进行数字图像处理中 Sobel 算子边缘检测的硬件连接电路图

    以下是基于 DSP5509 进行数字图像处理中 Sobel 算子边缘检测的硬件设计方案: 一、总体架构 图像采集:使用合适的图像传感器,如 CMOS 传感器,通过相应的接口(如 SPI、I2C 等
    发表于 09-25 15:25