0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

路易斯酸碱理论为电解液设计及金属基负极的实用化提供理论指导

工程师邓生 ? 来源:清新电源 ? 作者:指北针 ? 2022-08-31 10:23 ? 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

【研究背景】

Zn金属是水系锌离子电池(ZIBs)理想的负极材料。然而,Zn金属负极的使用往往伴随着枝晶生长以及难以控制的副反应,这严重阻碍了ZIBs的发展和应用。一般地,Zn枝晶的形成主要是因为Zn的不可控成核以及Zn2+缓慢的动力学;水引发的副反应主要集中在H2产生和电极腐蚀,多由电极-电解液界面高反应活性的自由H2O以及Zn2+和H2O较强的配位作用引起。这会导致ZIBs的库仑效率和循环寿命降低,在放大电极尺寸、增大面容量、深度放电时,上述副反应更为严重。 目前,针对ZIBs的改性工作,主要集中在以下三个方面:复合电极设计、电极-电解液界面调控以及电解液改性优化。其中,电解液优化得益于成本可控,更加适合产业化发展和大规模应用。然而,在目前报道的电解液改性优化研究中,测试条件多为较低的放电深度(DOD)以及小电流密度。而在“三高”(高DOD、高面容量、大电流密度)的严苛条件下,取得的研究进展较少。

【成果简介】

近日,中山大学卢锡洪教授、广东工业大学刘晓庆教授、五邑大学王付鑫博士等Angewandte Chemie International Edition上发表题为“Unshared Pair Electrons of Zincophilic Lewis Base Enable Long-life Zn Anodes under ‘Three High’ Conditions”的研究论文。作者利用经典的路易斯酸碱理论,在电解液中引入富含未成对电子的路易斯碱,用以铆定Zn2+(路易斯酸),以减轻枝晶的生长;同时还可以破坏H2O分子间的氢键,降低自由水的反应活性,从而抑制ZIBs体系中的副反应。通过二者结合,实现了ZIBs性能提升。该工作为电解液设计以及金属基负极的实用化提供了理论指导。

【研究亮点】

1. 从经典化学理论(路易斯酸碱理论)出发,利用未成对电子铆定Zn2+,同时破坏游离水分子的分子间氢键,降低其反应活性,以提升ZIBs的电化学性能。 2. 通过引入DMF添加剂,成功实现了最初的设计:大尺寸Zn||Zn软包电池在高DOD(60%)、高面容量(50 mAh/cm2)下实现了1000 h的稳定循环;基于VO正极的ZIBs全电池在“三高条件”下实现了2000圈稳定循环,库仑效率接近100%。

【图文导读】

作者首先研究了DMF添加剂对Zn2+溶剂化结构的影响。分子动力学(MD)模拟结果如图1a所示,水合Zn2+和OTf-共同组成了[Zn(H2O)6-x(OTf-)x]2+溶剂化结构。如图1b所示,加入DMF后,DMF可以作为溶剂化结构的一部分,和Zn2+配位。在ZOTF-2H1D中,最初的Zn2+溶剂化鞘层中包含4.4个H2O分子、0.3个DMF分子以及1.3个OTf-阴离子,可表示为[Zn(H2O)4.4(OTf-)1.3(DMF)0.3]2+,如图1c所示。由于部分H2O分子离开了Zn2+溶剂化鞘层,因此可以在很大程度上抑制析氢反应(HER),同时抑制Zn枝晶生长和电极腐蚀。 DFT计算同样验证了添加DMF对Zn2+溶剂化鞘层的影响。

Zn2+和水分子形成的最佳配位结构如图1d和e所示。由于DMF具有亲锌性,加入DMF会改变Zn2+的溶剂化结构,促进Zn2+与DMF和OTf-离子结合。 此外,作者还进行了核磁共振和红外光谱测试。如图1f-h,随着DMF的增加,水的1H化学位移明显减小,但展宽有所变宽,说明DMF的加入使水的电子云密度增大。这是由于H2O原有的分子间氢键被打断,转而形成更多的分子内氢键。红外光谱中的O-H键伸缩振动峰也验证了这一点。

0816747e-28b9-11ed-ba43-dac502259ad0.jpg

图1 (a)ZOTF和(b)ZOTF-2H1D电解液的分子动力学模拟结果。(c) Zn2+-O (H2O), Zn2+-O (OTf-) 以及 Zn2+-O (DMF)的RDFs以及在ZOTF-2H1D电解液中的配位情况。Zn2+与(d)DMF分子和(e)水分子的吸附能。(f)ZOTF和ZOTF-2H1D电解液中H2O的1H NMR谱图。(g-h) ZOTF和ZOTF-2H1D电解液的红外光谱。 恒流充放电测试结果如图2a所示。和Zn||Zn-ZOTF电池相比,基于ZOTF-2H1D电解液的Zn||Zn电池在面容量为4.1 mA cm-2,DOD为5%的条件下,极化电压接近119 mV。恒流充放电280 h后,Zn||Zn-ZOTF电池的极化电压会突然增大。

为了研究Zn||Zn-ZOTF电池的实际应用潜力,作者进一步研究了在~70%的高DOD和57.4 mAh cm-2的超高面容量下的性能(图2b)。在初始循环过程中,Zn||Zn-ZOTF电池的电压波动明显,不到50 h就开始失效;而Zn||Zn- ZOTF-2H1D电池在接近470 h的连续充放电过程中,极化电压在~347 mV的范围内保持恒定。显然,ZOTF- 2H1D电解液即使在“三高”条件下也能达到优异的性能(图2c)。在循环结束时,Zn||Zn- ZOTF-2H1D电池的体积几乎没有变化(图2d)。Ti||Zn-ZOTF-2H1D半电池经历100圈循环后的库伦效率(CE)约为100%(图2e),超过Ti||Zn-ZOTF,同时倍率性能也十分优异(图2f)。

083b3886-28b9-11ed-ba43-dac502259ad0.jpg


图2 Zn||Zn-ZOTF和Zn||Zn-ZOTF-2H1D电池在(a) 5 % DOD和(b)70 % DOD时的电压。(c) 根据面电流密度、面容量和DOD,将Zn||Zn-ZOTF-2H1D与先前报道的电解液作循环性能的对比。(d) Zn||Zn-ZOTF-2H1D软包电池在接近60% DOD条件下的电压曲线。(e)Ti||Zn电池在ZOTF和ZOTF-2H1D两种电解液体系中的循环效率。(f) DOD为5-70%时,Zn||Zn-ZOTF和Zn||Zn-ZOTF-2H1D电池的倍率性能对比。

如图3a所示,在ZOTF电解液中,在5mA cm-2电流密度下循环20 min后,电极-电解液界面处出现一些异常突起(如粉色箭头所示)和气泡(如黄色箭头所示)并随机生长。与之对应的是,ZOTF-2H1D电解液中的Zn电极表面保持平整光滑,无气体生成 (图3b),证明DMF添加剂能有效抑制枝晶生长和水分解。两种电解液中,Zn负极截面的SEM图也很好地验证了这一点(图3c和d)。

085f6724-28b9-11ed-ba43-dac502259ad0.jpg


图3 (a)ZOTF和(b)ZOTF-2H1D电解液体系中,5 mA cm-2电流密度下,Zn沉积/剥离过程不同时间后Zn负极/电解质界面的照片。(c)ZOTF和(d)ZOTF-2H1D电解液体系中,5 mA cm-2电流密度下,Zn沉积10min后,Zn电极截面的SEM图。 为了阐明其作用机理,作者首先在Zn||Zn对称电池中添加DMF,并进行计时电流测试,由此研究了Zn2+在过电位为-150 mV时的扩散行为差异。如图4a所示,随着ZOTF中电流的持续增加,Zn2+的扩散主要是沿表面进行的持续、不可控的二维扩散;相比之下,在ZOTF-2H1D中,DMF添加剂的未成对电子引起了Zn2+的三维扩散。

因此,Zn2+在ZOTF-2H1D中的成核和沉积过电位大大降低(图4b-c)。由图4d的Nyquist图可知,在添加DMF的Zn||Zn电池中,电荷转移阻抗(Rct)显著降低,且与DMF的添加量呈负相关,这归因于DMF未成对电子的界面修饰。 作者采用线性扫描伏安法研究了析氢行为。从图4e可以看出,ZOTF-2H1D中发生水分解的可能性较小,这再次肯定了DMF未成对电子对副反应的抑制作用。ZOTF-2H1D中,Zn负极具有较小的腐蚀电流,这也体现了混合电解液具有独特的耐腐蚀性能(图4f)。

0884d3a6-28b9-11ed-ba43-dac502259ad0.jpg


图4 (a) Zn沉积的计时电流曲线。(b) Zn在不同DOD下的电压-时间曲线。(c)Zn在ZOTF和ZOTF-2H1D电解液中的成核过电位。(d)Zn||Zn-ZOTF和Zn||Zn-ZOTF-2H1D电池的阻抗谱。Zn在ZOTF和ZOTF-2H1D电解液中的(e)产H2情况以及(f)腐蚀电位曲线。 最后,作者通过将Zn负极与自制的VO正极配对,证明了ZOTF-2H1D在ZIBs中的优越性。

如图5a-c所示,ZOTF-2H1D体系中,全电池的放电比容量和倍率性能均有所提升,阻抗也有所降低。VO//Zn-ZOTF-2H1D全电池经过2000圈循环后,容量没有明显下降,库仑效率接近100 %。

08a32432-28b9-11ed-ba43-dac502259ad0.jpg


图5 VO//Zn-ZOTF和VO//Zn-ZOTF-2H1D电池在0.3 A/g电流密度下的(a)GCD曲线, (b)倍率性能, (c) EIS阻抗谱, (d)1A/g下的循环性能, (e)库仑效率。

【总结和展望】

为了在“三高”测试条件下获得无枝晶、高库仑效率的Zn负极,作者引入含未成对电子的Lewis碱分子作为电解液添加剂,同时调控了水分子的活性和Zn2+配位环境。未成对电子可以使水分子的分子内氢键转变为分子间氢键,从而降低水的活度,进而抑制副反应。

DFT计算和实验结果表明,将Lewis碱作为添加剂,其未成对电子表现出的亲锌性不仅可以改变Zn2+溶剂化鞘层的结构,减少溶剂化鞘层中的水分子,而且有利于Zn2+的迁移和Zn的均匀沉积。该工作为设计有利于稳定金属负极体系的电解液提供了新的思路。



审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 离子电池
    +关注

    关注

    0

    文章

    69

    浏览量

    10419
  • 充放电
    +关注

    关注

    0

    文章

    181

    浏览量

    22281
  • 电解液
    +关注

    关注

    10

    文章

    863

    浏览量

    23562
  • DFT
    DFT
    +关注

    关注

    2

    文章

    236

    浏览量

    23513
  • 红外光谱
    +关注

    关注

    0

    文章

    81

    浏览量

    12293

原文标题:Angew:路易斯酸碱理论助力锌负极在严苛条件下稳定循环

文章出处:【微信号:清新电源,微信公众号:清新电源】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    电解电容的 “密封工艺”:如何防止电解液泄漏的 “致命伤”?

    电解电容作为电子电路中的关键元件,其可靠性直接影响整机设备的寿命。而电解液泄漏是铝电解电容失效的“头号杀手”——轻则导致容量衰减,重则引发短路甚至爆炸。通过分析行业技术资料和实际案例,我们发现密封
    的头像 发表于 08-08 16:29 ?269次阅读

    锂离子电池负极材料的挑战与硅负极的潜力

    ),有限的容量已无法满足市场对高比容量LIBs的需求。因此,寻求具有更高理论比容量、循环寿命长、安全稳定性高以及生产成本低的LIBs负极材料迫在眉睫。而硅负极作为
    的头像 发表于 08-05 17:55 ?89次阅读
    锂离子电池<b class='flag-5'>负极</b>材料的挑战与硅<b class='flag-5'>基</b><b class='flag-5'>负极</b>的潜力

    锂离子电池电解液浸润机制解析:从孔隙截留到工艺优化

    在锂离子电池制造领域,美能光子湾始终怀揣着推动清洁能源时代加速到来的宏伟愿景,全力助力锂离子电池技术的革新。在锂离子电池制造过程中,电解液浸润是决定电池性能、循环寿命和安全性的关键步骤。然而,由于
    的头像 发表于 08-05 17:49 ?233次阅读
    锂离子电池<b class='flag-5'>电解液</b>浸润机制解析:从孔隙截留到工艺优化

    攻克锂电池研发痛点-电解液浸润量化表征

    加快,低温环境下显著减慢 解决方案: 调整电解液配方,优化温度适应性 利用宽域温控功能(-20℃~80℃)模拟极端工况,指导材料选型 石墨负极片实验 痛点:生产缺陷(如褶皱)导致电解液
    发表于 07-14 14:01

    非接触式位传感器精准检测电解液位优选方案

    在现代化工业生产中,电解液位检测是一项至关重要的任务,其准确性直接关系到设备的稳定运行和产品质量。传统接触式位传感器由于直接接触电解液,容易受到腐蚀、污染和粘附等问题,从而导致测量
    的头像 发表于 04-12 10:53 ?566次阅读
    非接触式<b class='flag-5'>液</b>位传感器精准检测<b class='flag-5'>电解液</b><b class='flag-5'>液</b>位优选方案

    射频电路设计——理论与应用

    本资料从低频电路理论到射频、微波电路理论的演化过程出发,讨论以低频电路理论基础结合高频电压、电流的波动特征来分析和设计射频、微波系统的方法——微波等效电路法,使不具备电磁场
    发表于 04-03 11:41

    水系电池金属负极腐蚀问题综述

    离子储存在阳极主体中的“摇椅”式金属离子电池相比,金属负极的使用使AMB具有更高的能量密度。此外,金属负极在正极材料的搭配上
    的头像 发表于 02-18 14:37 ?850次阅读
    水系电池<b class='flag-5'>金属</b><b class='flag-5'>负极</b>腐蚀问题综述

    强弱耦合型电解液调控超级电容器宽温域特性及其机制研究

    影响,特别是在极端温度( 60 °C)下。极端工作温度下的性能衰减主要与电解液离子迁移、去溶剂能力和电解液热稳定性有关。一方面,传统碳酸酯类电
    的头像 发表于 01-21 11:01 ?626次阅读
    强弱耦合型<b class='flag-5'>电解液</b>调控超级电容器宽温域特性及其机制研究

    p-π共轭有机界面层助力钠金属电池稳定运行

    研究背景 由于天然丰度高、电位适中、理论容量高(1166 mAh g-1),钠金属负极被认为是有前途的下一代可充电池负极材料的有力候选者。然而,在传统有机
    的头像 发表于 01-14 10:43 ?721次阅读
    p-π共轭有机界面层助力钠<b class='flag-5'>金属</b>电池稳定运行

    调控磷酸酯阻燃电解液离子-偶极相互作用实现钠离子软包电池安全稳定运行

    研究背景 相较资源有限的锂离子电池,钠离子电池是一种极具前景的电化学储能技术,尤其适用于大规模储能系。然而,大多数钠离子电池体系仍基于传统碳酸酯电解液,这种电解液的热稳定性差、挥发性高且易燃,在
    的头像 发表于 01-06 17:41 ?973次阅读
    调控磷酸酯<b class='flag-5'>基</b>阻燃<b class='flag-5'>电解液</b>离子-偶极相互作用实现钠离子软包电池安全稳定运行

    贴片铝电解电容的封装材质型号有哪些?

    的散热功能。 内部材料 :主要包括铝箔、电解纸和电解液。铝箔经过电化腐蚀处理,形成凹凸不平的表面,以增大与电解质的接触面积;电解纸则用于吸附电解液
    的头像 发表于 12-27 14:32 ?922次阅读
    贴片铝<b class='flag-5'>电解</b>电容的封装材质型号有哪些?

    水系电解液宽电压窗口设计助力超长寿命水系钠离子电池

    【研究背景】水系钠离子电池(ASIBs)具有高安全、低成本、快速充电等优点,在大规模储能中显示出巨大的潜力。然而,传统的低浓度水系电解液(salt-in-water electrolytes
    的头像 发表于 12-20 10:02 ?1759次阅读
    水系<b class='flag-5'>电解液</b>宽电压窗口设计助力超长寿命水系钠离子电池

    一种新型的钠金属电池负极稳定策略

    金属电池因其高理论能量密度和低氧化还原电位而具有广泛的应用前景。然而,钠金属阳极与电解液之间不可避免的副反应、钠金属在循环过程中形成的钠枝
    的头像 发表于 10-28 09:36 ?1174次阅读
    一种新型的钠<b class='flag-5'>金属</b>电池<b class='flag-5'>负极</b>稳定<b class='flag-5'>化</b>策略

    亿纬锂能亮相美国路易斯维尔户外园林机械展览会

    日前,美国路易斯维尔户外园林机械展览会(2024)于肯塔基国际会展中心盛大举行。亿纬锂能携户外动力工具(OPE)及电动工具电源全场景解决方案亮相,产品全面覆盖圆柱电芯、方形磷酸铁锂电芯、电池包和模组,广泛适用于户外园林与工具机械多个领域,展会现场受到大量关注。
    的头像 发表于 10-23 15:09 ?801次阅读

    贴片电解电容正负极判断方法

    采用电解液作为介质的电容器,其特点是容量大、体积小、价格低廉。贴片电解电容通常采用铝或钽作为电极材料,通过电解液与电极之间的氧化还原反应来实现电荷的存储。 1.2 贴片电解电容分类 贴
    的头像 发表于 08-21 09:09 ?2856次阅读