0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

AlphaFold证明人工智能可以解决基本科学问题

璟琰乀 ? 来源:IEEE电气电子工程师 ? 作者:IEEE电气电子工程师 ? 2020-12-22 16:03 ? 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

任何人工智能的成功实施都依赖于以正确的方式提出正确的问题。这就是英国人工智能公司DeepMind(Alphabet的子公司)在利用其神经网络解决生物学的重大挑战之一蛋白质折叠(protein-folding)问题时所取得的成就。它的神经网络被称为AlphaFold,能够根据蛋白质的氨基酸序列以前所未有的准确度预测蛋白质的三维结构。

AlphaFold在蛋白质结构预测的第14个临界评估(14th Critical Assessment of protein Structure Prediction,CASP14)中的预测对于大多数蛋白质来说都精确到一个原子的宽度之内。竞争包括盲目地预测蛋白质的结构,这些蛋白质是最近才被实验确定的,还有一些尚待确定。

蛋白质被称为生命的组成部分,由20种不同的氨基酸以不同的组合和序列组成。蛋白质的生物学功能与其三维结构密切相关。因此,对最终折叠形状的了解对于理解特定蛋白质是如何工作的至关重要,例如它们如何与其他生物分子相互作用,如何控制或调整,等等。欧洲生物信息学研究所(European Bioinformatics Institute)荣誉主任Janet M. Thornton说:“能够根据序列预测结构是蛋白质设计真正迈出的第一步。”它在了解致病病原体方面也有巨大的益处。

预测蛋白质的三维结构是一场计算噩梦(computational nightmare)。1969年,Cyrus Levinthal估计,一种蛋白质有10300种可能的构象组合,这将需要比已知宇宙的年龄更长的时间来用蛮力计算进行评估。而AlphaFold则可以在几天内就完成。

随着科学的发展进步,AlphaFold的发现与James Watson和Francis Crick的DNA双螺旋模型(DNA double helix model),或者最近Jennifer Doudna和Emmanuelle Charpentier的CRISPR-Cas9基因组编辑技术一样,在科学上取得了突破。

几年前,曾有一个团队试图教人工智能去掌握一个有3000年历史的游戏,但最终如何训练人工智能来回答困扰生物学家50年的问题呢?数据科学家、人工智能公司PureStrategy的创始人Briana Brownell说,这就是人工智能的妙处:同样的算法可以用于非常不同的事情。

“每当你遇到问题,你想用人工智能来解决时,”她说,“你需要弄清楚如何将正确的数据输入模型,然后将正确的输出类型转换回现实世界。”

她说,DeepMind的成功与其说是挑选正确的神经网络的功能,不如说是“它们选择了如何以足够复杂的方式设置问题,以神经网络为基础的建模能够真正回答问题。”

2018年,当DeepMind在CASP13上发现了他们的人工智能的一次迭代时 -- AlphaFold显示出了希望 -- 在所有参与者中实现了最高的精确度。该团队训练它从头开始模拟目标形状,而不使用先前已解决的蛋白质作为模板。

到2020年,他们在人工智能中部署了新的深度学习架构,使用了一种经过端到端培训的注意力模型。深度学习网络中的注意力指的是管理和量化输入和输出元素之间以及输入元素之间相互依赖关系的组件。

除了具有未知结构的蛋白质序列的数据库外,该系统还接受了大约170000个已知实验蛋白质结构的公共数据集的训练。

Brownell说:“如果你看看他们两年前,和这次不同的是,人工智能系统的结构是不同的。这一次,他们发现了如何将真实世界转化为数据……并创建了一个可以转换回现实世界的输出。”

像任何人工智能系统一样,AlphaFold可能需要处理训练数据中的偏差。例如,Brownell说,AlphaFold使用的是蛋白质结构的可用信息,这些信息已经通过其他方式进行了测量。然而,也有许多蛋白质具有未知的三维结构。因此,她说,可以想象,一种偏见可能会蔓延到那些我们有更多结构数据的蛋白质。

Thornton说,很难预测AlphaFold的突破要花多长时间才能转化为实际应用。她说:“我们只有人体20000种蛋白质中约10%的实验结构。一个强大的人工智能模型可以揭示其他90%的结构。”

除了增加我们对人类生物学和健康的了解,她补充道:“这是朝着……构建实现特定功能的蛋白质迈出的真正的第一步。从蛋白质疗法到生物燃料或食用塑料的酶,可能性是无穷的。”

责任编辑:haq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • AI
    AI
    +关注

    关注

    88

    文章

    35915

    浏览量

    283075
  • 人工智能
    +关注

    关注

    1810

    文章

    49250

    浏览量

    251951
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    挖到宝了!人工智能综合实验箱,高校新工科的宝藏神器

    家人们,最近在研究人工智能相关设备,挖到了一款超厉害的宝藏——比邻星人工智能综合实验箱,必须来给大伙分享分享!可?(壹捌伍 柒零零玖 壹壹捌陆) 一、开箱即学,便捷拉满 这个实验箱真的是为使用者
    发表于 08-07 14:30

    挖到宝了!比邻星人工智能综合实验箱,高校新工科的宝藏神器!

    家人们,最近在研究人工智能相关设备,挖到了一款超厉害的宝藏——比邻星人工智能综合实验箱,必须来给大伙分享分享!可?(壹捌伍 柒零零玖 壹壹捌陆) 一、开箱即学,便捷拉满 这个实验箱真的是为使用者
    发表于 08-07 14:23

    超小型Neuton机器学习模型, 在任何系统级芯片(SoC)上解锁边缘人工智能应用.

    Neuton 是一家边缘AI 公司,致力于让机器 学习模型更易于使用。它创建的模型比竞争对手的框架小10 倍,速度也快10 倍,甚至可以在最先进的边缘设备上进行人工智能处理。在这篇博文中,我们将介绍
    发表于 07-31 11:38

    最新人工智能硬件培训AI 基础入门学习课程参考2025版(大模型篇)

    人工智能大模型重塑教育与社会发展的当下,无论是探索未来职业方向,还是更新技术储备,掌握大模型知识都已成为新时代的必修课。从职场上辅助工作的智能助手,到课堂用于学术研究的智能工具,大模型正在工作生活
    发表于 07-04 11:10

    教育部增设29种本科新专业 本科增设人工智能教育专业

    人工智能产业人才从哪里来?高校培养怎么更进一步?我们看见教育部增设29种本科新专业;人工智能教育专业在列。 教育部增设29种本科新专业? ? ?本科
    的头像 发表于 04-23 17:00 ?557次阅读

    2025年人工智能会发生哪些变化

    。这些设置设想人工智能团队解决健康、教育和金融领域的复杂问题。其他学者预计,人机协作的新方法将出现,同时开发者将面临证明人工智能实际效益的更大压力。 此外,学者们警告说,生成式人工智能可能会增加复杂诈骗的数量,同时美国已
    的头像 发表于 01-21 11:28 ?1212次阅读

    嵌入式和人工智能究竟是什么关系?

    领域,如工业控制、智能家居、医疗设备等。 人工智能是计算机科学的一个分支,它研究如何使计算机具备像人类一样思考、学习、推理和决策的能力。人工智能的发展历程
    发表于 11-14 16:39

    《AI for Science:人工智能驱动科学创新》第6章人AI与能源科学读后感

    幸得一好书,特此来分享。感谢平台,感谢作者。受益匪浅。 在阅读《AI for Science:人工智能驱动科学创新》的第6章后,我深刻感受到人工智能在能源科学领域中的巨大潜力和广泛应
    发表于 10-14 09:27

    AI for Science:人工智能驱动科学创新》第4章-AI与生命科学读后感

    研究的进程。从蛋白质结构预测到基因测序与编辑,再到药物研发,人工智能技术在生命科学的各个层面都发挥着重要作用。特别是像AlphaFold这样的工具,成功解决了困扰生物学界半个多世纪的蛋白质折叠问题,将
    发表于 10-14 09:21

    《AI for Science:人工智能驱动科学创新》第二章AI for Science的技术支撑学习心得

    非常高兴本周末收到一本新书,也非常感谢平台提供阅读机会。 这是一本挺好的书,包装精美,内容详实,干活满满。 关于《AI for Science:人工智能驱动科学创新》第二章“AI
    发表于 10-14 09:16

    《AI for Science:人工智能驱动科学创新》第一章人工智能驱动的科学创新学习心得

    周末收到一本新书,非常高兴,也非常感谢平台提供阅读机会。 这是一本挺好的书,包装精美,内容详实,干活满满。 《AI for Science:人工智能驱动科学创新》这本书的第一章,作为整个著作的开篇
    发表于 10-14 09:12

    risc-v在人工智能图像处理应用前景分析

    定制性。这些特点使得RISC-V在多个领域,包括人工智能图像处理领域,具有显著的优势。 二、RISC-V在人工智能图像处理中的优势 开源性和灵活性 : RISC-V的开源性意味着任何人都可以自由研究
    发表于 09-28 11:00

    人工智能ai 数电 模电 模拟集成电路原理 电路分析

    人工智能ai 数电 模电 模拟集成电路原理 电路分析 想问下哪些比较容易学 不过好像都是要学的
    发表于 09-26 15:24

    人工智能ai4s试读申请

    目前人工智能在绘画对话等大模型领域应用广阔,ai4s也是方兴未艾。但是如何有效利用ai4s工具助力科研是个需要研究的课题,本书对ai4s基本原理和原则,方法进行描诉,有利于总结经验,拟按照要求准备相关体会材料。看能否有助于入门和提高ss
    发表于 09-09 15:36

    名单公布!【书籍评测活动NO.44】AI for Science:人工智能驱动科学创新

    ! 《AI for Science:人工智能驱动科学创新》 这本书便将为读者徐徐展开AI for Science的美丽图景,与大家一起去了解: 人工智能究竟帮科学家做了什么?
    发表于 09-09 13:54