0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

基于内存的人工智能神经网络架构

姚小熊27 ? 来源:人工智能实验室 ? 作者:人工智能实验室 ? 2020-12-18 13:40 ? 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

在过去十年左右的时间里,研究人员已经开发了多种基于人工神经网络(ANN)的计算模型。尽管已发现许多这些模型在特定任务上表现良好,但它们并不总是能够识别可应用于新问题的迭代,顺序或算法策略。

过去的研究发现,添加外部存储器组件可以提高神经网络获取这些策略的能力。但是,即使使用外部存储器,它们也容易出错,对提供给他们的数据变化敏感,并且需要大量的训练数据才能很好地发挥作用。

达姆施塔特技术大学的研究人员最近推出了一种新的基于记忆增强的基于ANN的体系结构,该体系结构可以学习解决问题的抽象策略。这种结构在将算法计算与依赖于数据的操作分开,将算法处理的信息流划分为两个不同的“流”。

研究人员在论文中写道:“扩展具有外部记忆的神经网络已经提高了他们学习这种策略的能力,但是它们仍然容易出现数据变化,难以学习可扩展和可转移的解决方案,并且需要大量的训练数据。” “我们提出了神经哈佛计算机,这是一种基于内存的基于网络的体系结构,该体系结构通过将算法操作与数据操作解耦而采用抽象,通过拆分信息流和分离的模块来实现。”

神经哈佛计算机或NHC将输入算法的信息流分为两个不同的流,即数据流(包含特定于数据的操作)和控制流(包含算法操作)。最终,它可以区分与数据相关的模块和算法模块,从而创建两个独立但又耦合的存储器。

NHC具有三个主要的算法模块,分别称为控制器,存储器和总线。这三个组件具有不同的功能,但彼此交互以获取可应用于将来任务的抽象。研究人员在论文中解释说:“这种抽象机制和进化训练使学习健壮和可扩展的算法解决方案成为可能。”

研究人员通过使用NHC训练和运行11种不同的算法来评估NHC。然后,他们测试了这些算法的性能,以及它们的泛化和抽象能力。研究人员发现,NHC可以可靠地运行所有11种算法,同时还可以使它们在比最初训练要完成的任务复杂的任务上表现出色。“在11种复杂程度各异的算法中,我们证明NHC可靠地学习了具有强大概括性和抽象性的算法解决方案,可以完美地概括和扩展到任意任务配置和复杂性,而这些复杂性和复杂性远远超出了训练期间所看到的,并且与数据无关表示法和任务领域”,

该研究人员小组最近进行的研究证实了使用外部存储组件来增强复杂程度不同的任务中基于神经网络的体系结构的性能和可推广性的潜力。将来,NHC体系结构可用于合并和改进不同ANN的功能,从而帮助开发可识别有用策略的模型,从而基于新数据做出准确的预测。
责任编辑:YYX

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4815

    浏览量

    104594
  • 内存
    +关注

    关注

    8

    文章

    3133

    浏览量

    75482
  • 人工智能
    +关注

    关注

    1810

    文章

    49250

    浏览量

    251948
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    MAX78000采用超低功耗卷积神经网络加速度计的人工智能微控制器技术手册

    人工智能(AI)需要超强的计算能力,而Maxim则大大降低了AI计算所需的功耗。MAX78000是一款新型的AI微控制器,使神经网络能够在互联网边缘端以超低功耗运行,将高能效的AI处理与经过验证
    的头像 发表于 05-08 11:42 ?410次阅读
    MAX78000采用超低功耗卷积<b class='flag-5'>神经网络</b>加速度计<b class='flag-5'>的人工智能</b>微控制器技术手册

    MAX78002带有低功耗卷积神经网络加速器的人工智能微控制器技术手册

    人工智能(AI)需要超强的计算能力,而Maxim则大大降低了AI计算所需的功耗。MAX78002是一款新型的AI微控制器,使神经网络能够在互联网边缘端以超低功耗运行,将高能效的AI处理与经过验证
    的头像 发表于 05-08 10:16 ?315次阅读
    MAX78002带有低功耗卷积<b class='flag-5'>神经网络</b>加速器<b class='flag-5'>的人工智能</b>微控制器技术手册

    开售RK3576 高性能人工智能主板

    ZYSJ-2476B 高性能智能主板,采用瑞芯微 RK3576 高性能 AI 处理器、神经网络处理器 NPU, Android 14.0/debian11/ubuntu20.04 操作系统
    发表于 04-23 10:55

    【「芯片通识课:一本书读懂芯片技术」阅读体验】从deepseek看今天芯片发展

    的: 神经网络处理器(NPU)是一种模仿人脑神经网络的电路系统,是实现人工智能神经网络计算的专用处理器,主要用于人工智能深度学习模型的加速
    发表于 04-02 17:25

    BP神经网络与卷积神经网络的比较

    BP神经网络与卷积神经网络在多个方面存在显著差异,以下是对两者的比较: 一、结构特点 BP神经网络 : BP神经网络是一种多层的前馈神经网络
    的头像 发表于 02-12 15:53 ?854次阅读

    BP神经网络的优缺点分析

    自学习能力 : BP神经网络能够通过训练数据自动调整网络参数,实现对输入数据的分类、回归等任务,无需人工进行复杂的特征工程。 泛化能力强 : BP神经网络通过训练数据学习到的特征表示
    的头像 发表于 02-12 15:36 ?1081次阅读

    人工神经网络的原理和多种神经网络架构方法

    在上一篇文章中,我们介绍了传统机器学习的基础知识和多种算法。在本文中,我们会介绍人工神经网络的原理和多种神经网络架构方法,供各位老师选择。 01
    的头像 发表于 01-09 10:24 ?1458次阅读
    <b class='flag-5'>人工</b><b class='flag-5'>神经网络</b>的原理和多种<b class='flag-5'>神经网络</b><b class='flag-5'>架构</b>方法

    卷积神经网络与传统神经网络的比较

    在深度学习领域,神经网络模型被广泛应用于各种任务,如图像识别、自然语言处理和游戏智能等。其中,卷积神经网络(CNNs)和传统神经网络是两种常见的模型。 1. 结构差异 1.1 传统
    的头像 发表于 11-15 14:53 ?2075次阅读

    RNN模型与传统神经网络的区别

    传统神经网络(前馈神经网络) 2.1 结构 传统神经网络,通常指的是前馈神经网络(Feedforward Neural Networks, FNN),是一种最简单
    的头像 发表于 11-15 09:42 ?1300次阅读

    嵌入式和人工智能究竟是什么关系?

    人工智能的结合,无疑是科技发展中的一场革命。在人工智能硬件加速中,嵌入式系统以其独特的优势和重要性,发挥着不可或缺的作用。通过深度学习和神经网络等算法,嵌入式系统能够高效地处理大量数据,从而实现
    发表于 11-14 16:39

    LSTM神经网络在语音识别中的应用实例

    语音识别技术是人工智能领域的一个重要分支,它使计算机能够理解和处理人类语言。随着深度学习技术的发展,特别是长短期记忆(LSTM)神经网络的引入,语音识别的准确性和效率得到了显著提升。 LSTM
    的头像 发表于 11-13 10:03 ?2028次阅读

    Moku人工神经网络101

    不熟悉神经网络的基础知识,或者想了解神经网络如何优化加速实验研究,请继续阅读,探索基于深度学习的现代智能化实验的广阔应用前景。什么是神经网络?“人工
    的头像 发表于 11-01 08:06 ?741次阅读
    Moku<b class='flag-5'>人工</b><b class='flag-5'>神经网络</b>101

    关于卷积神经网络,这些概念你厘清了么~

    随着人工智能(AI)技术的快速发展,AI可以越来越多地支持以前无法实现或者难以实现的应用。本文基于此解释了 卷积神经网络 (CNN)及其对人工智能和机器学习的意义。CNN是一种能够从复杂数据中提
    发表于 10-24 13:56

    risc-v在人工智能图像处理应用前景分析

    长时间运行或电池供电的设备尤为重要。 高性能 : 尽管RISC-V架构以低功耗著称,但其高性能也不容忽视。通过优化指令集和处理器设计,RISC-V可以在处理复杂的人工智能图像处理任务时表现出色。 三
    发表于 09-28 11:00

    matlab 神经网络 数学建模数值分析

    matlab神经网络 数学建模数值分析 精通的可以讨论下
    发表于 09-18 15:14