0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

最新测试:NVIDIA的安培GPU测试性能是最先进 CPU的237倍

如意 ? 来源:雷锋网 ? 作者:包永刚 ? 2020-10-23 09:49 ? 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

MLPerf组织今天发布最新的推理基准测试(Benchmark)MLPerf Inference v0.7结果,总共有23个组织提交了结果,相比上一个版本(MLPerf Inference v0.5)的12个提交者增加了近一倍。

结果显示,今年5月NVIDIA(Nvidia)发布的安培(Ampere)架构A100 Tensor Core GPU,在云端推理的基准测试性能是最先进Intel CPU的237倍。

最新测试:NVIDIA的安培GPU测试性能是最先进 CPU的237倍

MLPerf Inference V0.7部分结果截图

最新的AI推理测试结果意味着,NVIDIA未来可能在AI推理和训练市场都占据领导地位,给云端AI推理市场拥有优势的Intel带来更大压力的同时,也将让其他追赶者面临更大挑战。

MLPerf推理基准测试进一步完善的价值

与2019年的MLPerf Inference v0.5版本相比,最新的0.7版本将测试从AI研究的核心视觉和语言的5项测试,扩展了到了包括推荐系统、自然语言理解、语音识别和医疗影像应用的6项测试,并且有分别针对云端和终端推理的测试,还加入了手机和笔记本电脑的结果。

扩展的测试项从MLPerf和业界两个角度都有积极意义。

最新测试:NVIDIA的安培GPU测试性能是最先进 CPU的237倍

任何一个基准测试都需要给业界具有参考价值的指标。MLPerf基准测试是在业界缺乏对AI芯片公认的评价标准的2018年诞生,因此,MLPerf组织既需要给出各方都认可的成绩,还需要根据AI行业的发展完善评价标准。

不过,AI行业发展迅速,AI模型的参数越来越多,应用的场景也越来越广泛。评价AI芯片和系统的推理性能需要涵盖可编程性、延迟、准确性、模型大小、吞吐量、能效等指标,也需要选择更具指导价值的模型和应用。

此次增加的推荐系统测试对于互联网公司意义重大。在王喆的《深度学习推荐系统》一书中提到,2019年天猫“双11”的成交额是2684亿元,假设推荐系统进行了优化,整体的转化率提高1%,那么增加的成交额大约为26.84亿元。

另外,MLPerf Inference v0.7中增加医疗影像3D U-Net模型测试与新冠大流行以及AI在医疗行业的重要性与日俱增密切相关,比如一家初创公司使用AI简化了超声心电图的采集工作,在新冠大流行初期发挥了作用。

基准测试从v0.5到v0.7,能够为要选用AI芯片和系统的公司提供更直观和有价值的参考是MLPerf基准测试的价值所在,比如,帮助金融结构的会话式AI更快速回答客户问题,帮助零售商使用AI保证货架库存充足。

与此同时,这也将促进MLPerf组织在业界的受认可程度,从接近翻倍的提交成绩的组织就能看出来。

GPU云端推理性能最高是CPU的237倍

过去几年,云端AI训练市场NVIDIA拥有绝对优势,云端AI推理市场被Intel赚取了大部分利润是事实。这让不少人都产生了GPU更适合训练而CPU更适合推理的认知,但MLPerf最新的推理测试结果可能会改变这一观点。

MLPerf Inference V0.7的测试结果显示,在数据中心OFFLINE(离线)测试模式下,赛灵思U250和IntelCooper Lake在各个测试模型下与NVIDIAT4的差距不大,但A100对比CPU、FPGA和自家的T4就有明显的性能差距。

在SERVER模式下的推荐系统DLRM模型下,A100 GPU对比IntelCooper Lake有最高237倍的性能差距,在其他模型下也有比较显著的差距。值得注意的是,Intel的Cooper Lake系统的状态还是预览,其余三款芯片的系统都已经可用。

A100 GPU的优势也在边缘推理中也十分明显。在单数据流(Singel-Stream)测试中,A100对比NVIDIAT4和面向边缘终端的NVIDIAJetson AGX Xavier有几倍到十几倍的性能优势。在多数据流(Multi-Stream)测试中,A100对比另外两款自家产品在不同AI模型中有几倍到二十多倍的性能优势。

在边缘OFFLINE模式下,A100对比T4和Jetson AGX Xavier也有几倍到二十多倍的性能优势。

这很好地说明A100的安培架构以及其第三代Tensor Core优势的同时,也表明了NVIDIA能够覆盖整个AI推理市场。

在此次提交结果的23家公司中,除了NVIDIA外还有11家其合作伙伴提交了基于NVIDIA GPU的1029个测试结果,占数据中心和边缘类别中参评测试结果总数的85%以上。

从提交结果的合作伙伴的系统中可以看到,NVIDIAT4仍然是企业的边缘服务器推理平台的主要选择。A100提升到新高度的性能意味着未来企业边缘服务器在选择AI推理平台的时候,可以从T4升级到A100,对于功耗受限的设备,可以选择Jeston系列产品。

特别值得注意的是,NVIDIA GPU首次在公有云中实现了超越CPU的AI推理能力。

临界点到来?AI推理芯片市场竞争门槛更高

五年前,只有少数领先的高科技公司使用GPU进行推理。如今,NVIDIAGPU首次在公有云市场实现超越CPU的AI推理能力,或许意味着AI推理市场临界点的到来。NVIDIA还预测,基于其GPU的总体云端AI推理计算能力每两年增长约10倍,增长速度高于CPU。

另外,NVIDIA还强调基于A100高性能系统的成本效益。NVIDIA表示,一套DGX A100系统可以提供相当于近1000台双插槽CPU服务器的性能,能为客户AI推荐系统模型从研发走向生产的过程,具有极高的成本效益。

同时,NVIDIA也在不断优化推理软件堆栈,进一步提升在推理市场的竞争力。

最先感受到影响的会是Intel,但在云端AI推理市场体现出显著变化至少需要几年时间,因为企业在更换平台的时候会更加谨慎,生态的护城河此时也更能体现出价值。

但无论如何,我们都看到NVIDIA在AI市场的强势地位。雷锋网七月底报道,在MLPerf发布的MLPerf Training v0.7基准测试中,A100 Tensor Core GPU,和HDR InfiniBand实现多个DGX A100 系统互联的庞大集群DGX SuperPOD系统在性能上开创了八个全新里程碑,共打破16项纪录。

安培架构A100在MLPerf最新的训练和推理成绩表明NVIDIA不仅给云端AI训练的竞争者更大的压力,也可能改变AI推理市场的格局。

NVIDIA将其在云端训练市场的优势进一步拓展到云端和边缘推理市场符合AI未来的发展趋势。有预测指出,随着AI模型的成熟,市场对云端AI训练需求的增速将会降低,云端AI推理的市场规模将会迅速增加,并有望在2022年超过训练市场。

另据市场咨询公司ABI Research的数据,预计到2025年,边缘AI芯片市场收入将达到122亿美元,云端AI芯片市场收入将达到119亿美元,边缘AI芯片市场将超过云端AI芯片市场。

凭借强大的软硬件生态系统,NVIDIA和Intel依旧会是AI市场的重要玩家,只是随着他们竞争力的不断提升,其他参与AI市场竞争的AI芯片公司们面临的压力也随之增加。
责编AJX

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • cpu
    cpu
    +关注

    关注

    68

    文章

    11099

    浏览量

    217754
  • NVIDIA
    +关注

    关注

    14

    文章

    5324

    浏览量

    106657
  • gpu
    gpu
    +关注

    关注

    28

    文章

    4969

    浏览量

    131725
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    PCIe协议分析仪能测试哪些设备?

    :提升数据中心的整体效率,降低CPU负载。 四、异构计算与扩展设备 多GPU系统 测试场景:利用PCIe协议分析仪模拟高负载的GPU间通信,测试
    发表于 07-25 14:09

    NVIDIA Blackwell GPU优化DeepSeek-R1性能 打破DeepSeek-R1在最小延迟场景中的性能纪录

    本文将探讨 NVIDIA TensorRT-LLM 如何基于 8 个 NVIDIA Blackwell GPU 的配置,打破 DeepSeek-R1 在最小延迟场景中的性能纪录:在 G
    的头像 发表于 07-02 19:31 ?2320次阅读
    <b class='flag-5'>NVIDIA</b> Blackwell <b class='flag-5'>GPU</b>优化DeepSeek-R1<b class='flag-5'>性能</b> 打破DeepSeek-R1在最小延迟场景中的<b class='flag-5'>性能</b>纪录

    【「算力芯片 | 高性能 CPU/GPU/NPU 微架构分析」阅读体验】+NVlink技术从应用到原理

    。。) 原理学习 在「算力芯片 | 高性能 CPU/GPU/NPU 微架构分析」书中,作者详解了从帕斯卡架构到40系的Hopper架构的技术演变进化,按照出版时间算是囊括了NVIDIA
    发表于 06-18 19:31

    1.9性能提升!英特尔至强6在MLPerf基准测试中表现卓越

    与第五代至强处理器相比,英特尔至强6性能核的性能平均提高了1.9。 今日,MLCommons公布了最新的MLPerf推理v5.0基准测试结果,其中,英特尔??至强??6
    的头像 发表于 04-07 10:58 ?314次阅读

    使用NVIDIA RTX PRO Blackwell系列GPU加速AI开发

    NVIDIA GTC 推出新一代专业级 GPU 和 AI 赋能的开发者工具—同时,ChatRTX 更新现已支持 NVIDIA NIM,RTX Remix 正式结束测试阶段,本月的
    的头像 发表于 03-28 09:59 ?666次阅读

    比斯特电池组综合性能测试机:基于先进技术的性能优势展现

    在锂电池测试设备的领域中,比斯特BT-100V20C100F 电池组综合性能测试机凭借其基于先进技术构建的强大性能优势,脱颖而出,成为了行业
    的头像 发表于 03-07 09:49 ?344次阅读
    比斯特电池组综合<b class='flag-5'>性能</b><b class='flag-5'>测试</b>机:基于<b class='flag-5'>先进</b>技术的<b class='flag-5'>性能</b>优势展现

    NVIDIA推出GeForce RTX 50系列台式机和笔记本电脑GPU

    NVIDIA 宣布为游戏玩家、创作者和开发者推出最先进的消费级 GPU——GeForce RTX 50 系列台式机和笔记本电脑 GPU
    的头像 发表于 01-08 11:05 ?993次阅读

    Advantest CEO:先进芯片测试需求大增

    技术的不断进步,现代先进芯片在测试方面的需求较以往有了大幅提升。他透露,目前最先进的芯片从晶圆切割到成品组装的全流程中,需要经过Advantest设备10~20道的测试。而在五年前,这
    的头像 发表于 01-03 14:26 ?595次阅读

    如何测试电子开关的性能

    测试电子开关的性能是确保其质量和可靠性的重要环节。以下是一些常用的测试方法和步骤: 一、基本性能测试 标志检查 :确保产品有清晰的标志和说明
    的头像 发表于 12-30 14:55 ?1186次阅读

    华为云 X 实例 CPU 性能测试详解与优化策略

    引言 ? 1. 测试环境搭建 ? 1.1 测试实例的选择 ? 1.2 CPU性能测试工具介绍 ? 1.3 安装和配置Sysbench ? 2
    的头像 发表于 12-30 14:52 ?723次阅读
    华为云 X 实例 <b class='flag-5'>CPU</b> <b class='flag-5'>性能</b><b class='flag-5'>测试</b>详解与优化策略

    《CST Studio Suite 2024 GPU加速计算指南》

    问题,但会降低旧GPU硬件性能,可通过NVIDIA控制面板或命令行工具nvidia - smi管理。 - TCC模式(Windows only):某些
    发表于 12-16 14:25

    如何测试PROM器件的性能

    测试PROM(Programmable Read-Only Memory,可编程只读存储器)器件的性能是确保其在实际应用中稳定可靠的重要环节。以下是一些常用的测试PROM器件性能的方法
    的头像 发表于 11-23 11:33 ?756次阅读

    AMD与NVIDIA GPU优缺点

    在图形处理单元(GPU)市场,AMD和NVIDIA是两大主要的竞争者,它们各自推出的产品在性能、功耗、价格等方面都有着不同的特点和优势。 一、性能
    的头像 发表于 10-27 11:15 ?2788次阅读

    嵌入式MXM模块(NVIDIA安培架构)

    电子发烧友网站提供《嵌入式MXM模块(NVIDIA安培架构).pdf》资料免费下载
    发表于 10-09 11:09 ?0次下载

    IB Verbs和NVIDIA DOCA GPUNetIO性能测试

    NVIDIA DOCA GPUNetIO 是 NVIDIA DOCA SDK 中的一个库,专门为实时在线 GPU 数据包处理而设计。它结合了 GPUDirect RDMA 和 GPUDirect
    的头像 发表于 08-23 17:03 ?1444次阅读
    IB Verbs和<b class='flag-5'>NVIDIA</b> DOCA GPUNetIO<b class='flag-5'>性能</b><b class='flag-5'>测试</b>