(a)当进行充放电循环时,电流密度以不对称形式增加的情况下各种纸电极电荷容量和充电效率的图样。
(b)rGO和60SiOC电极的长期循环表现在1600毫安时每克。970次循环后,当电流密度降到100毫安时每克时电极表现出了不错的恢复性能。插图为rGO和60SiOC电极的扫面电镜图样。
(c)60SiOC电极的电压曲线。
(d)第1、第2、第1010次循环的不同容量曲线。
(e)60SiOC在零度以下的循环表现。冷却到零下15摄氏度时,电池显示出了大约200毫安时每克的的容量。当温度升至室温,大约25摄氏度时,电池容量重新变为原来的86%左右。
(f)在碳氧化硅微粒中锂或非锂的原理图。大多数的锂分布在无规则的碳相中,这些碳相均匀的分布在SiOC不定型矩阵中。大的rGO片层作为高效的电子导体和弹性支撑。
?
机械测试
(a)rGO纸断裂时拍摄的照片做拉伸力测试的原理图,比例尺表明长度的变化是0.28毫米
(b)根据负载—位移数据绘制的应变图样,以及它们相应的模值。
(c)rGO, 10SiOC, 40SiOC, 和60SiOC的系数值,误差分别为26.8, 7.6, 41.5, 24.1 MPa
(d) rGO纸在失效前表现出拉伸现象和石墨烯片层的重新排列。
(e) 对于60SiOC纸,出现了一些细微的拉伸和重新排列,断裂线随着SiOC微粒嵌入到rGO白斑中,纸逐渐开裂。
合成制备方法SiOC陶瓷的制备的准备工作:SiOC通过高分子热解法制备,液态的TTCS在380℃氩气气氛中交叉结合5h,最终生成白色不溶物。不溶物随后通过球磨成粉末然后在氩气氛围中以1000℃热解10h,最终变成黑色的SiOC陶瓷粉末。 GO和SiOC的制备方法:用改进的Hummer’s来制备GO,用超声波法将水和异丙醇按体积比1:1制备20毫升GO胶体悬浮液。将不同重量百分比的SiOC颗粒添加到该溶液中,溶液超声震动1 h,搅拌6h,后将复合材料用10微米的过滤膜真空抽滤。将GO/SiOC小心地从滤纸上刮掉,干燥,在氩气气氛中500℃保持2h。同样,用聚丙烯作为滤纸来制备60SiOC大面积的纸。将热处理后的纸切成小圆圈,用作锂离子电池的半电池的工作电极材料。 纽扣电池的组装以及电化学测量手段:在充满氩气氛围的手套箱中组装锂电池。将一个25微米厚的玻璃(直径19毫米)浸润在工作电极和金属锂(直径14.3毫米,75微米厚)之间的电解液中作为对电极。将垫圈、弹簧、电池壳等依次组装,然后压制成型。
展望:锂电池不断朝着更高能量密度、更加轻质、更加安全的方向发展,会使更多的移动终端走向我们生活的各个方面,让我们的生活永不断电!
该研究小组制备的碳氧化硅玻璃-石墨烯复合类纸电极具有优异的循环特性,电极材料多次循环后比容量损耗低,首次循环比容量高,耐用时间长,同时研究小组还确定了非活性成分的成分,为生产轻量化电池提供了方向。