完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>
标签 > 机器学习
机器学习(Machine Learning, ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。
机器学习(Machine Learning, ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。
它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎。
机器学习(Machine Learning, ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。
它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎。
表示学习系统的基本结构。环境向系统的学习部分提供某些信息,学习部分利用这些信息修改知识库,以增进系统执行部分完成任务的效能,执行部分根据知识库完成任务,同时把获得的信息反馈给学习部分。在具体的应用中,环境,知识库和执行部分决定了具体的工作内容,学习部分所需要解决的问题完全由上述3部分确定。下面我们分别叙述这3部分对设计学习系统的影响。
影响学习系统设计的最重要的因素是环境向系统提供的信息。或者更具体地说是信息的质量。知识库里存放的是指导执行部分动作的一般原则,但环境向学习系统提供的信息却是各种各样的。如果信息的质量比较高,与一般原则的差别比较小,则学习部分比较容易处理。如果向学习系统提供的是杂乱无章的指导执行具体动作的具体信息,则学习系统需要在获得足够数据之后,删除不必要的细节,进行总结推广,形成指导动作的一般原则,放入知识库,这样学习部分的任务就比较繁重,设计起来也较为困难。
因为学习系统获得的信息往往是不完全的,所以学习系统所进行的推理并不完全是可靠的,它总结出来的规则可能正确,也可能不正确。这要通过执行效果加以检验。正确的规则能使系统的效能提高,应予保留;不正确的规则应予修改或从数据库中删除。
知识库是影响学习系统设计的第二个因素。知识的表示有多种形式,比如特征向量、一阶逻辑语句、产生式规则、语义网络和框架等等。这些表示方式各有其特点,在选择表示方式时要兼顾以下4个方面:
(1)表达能力强。
(2)易于推理。
(3)容易修改知识库。
(4)知识表示易于扩展。
对于知识库最后需要说明的一个问题是学习系统不能在全然没有任何知识的情况下凭空获取知识,每一个学习系统都要求具有某些知识理解环境提供的信息,分析比较,做出假设,检验并修改这些假设。因此,更确切地说,学习系统是对现有知识的扩展和改进。
执行部分是整个学习系统的核心,因为执行部分的动作就是学习部分力求改进的动作。同执行部分有关的问题有3个:复杂性、反馈和透明性。
随着机器学习和人工智能技术的迅猛发展,传统的中央处理单元(CPU)和图形处理单元(GPU)已经无法满足高效处理大规模数据和复杂模型的需求。FPGA(现场...
机器学习异常检测实战:用Isolation Forest快速构建无标签异常检测系统
本文转自:DeepHubIMBA无监督异常检测作为机器学习领域的重要分支,专门用于在缺乏标记数据的环境中识别异常事件。本文深入探讨异常检测技术的理论基础...
【RA8D1-Vision Board】openmv实现鸟巢识别 | 技术集结
项目简介本项目使用EdgeImpulse进行模型的训练。EdgeImpulse是一个端到端的开发平台,专为构建和部署嵌入式机器学习模型而设计。它使开发人...
树莓派5上的Gemma 2:如何打造高效的边缘AI解决方案?
从数学基础到边缘实现,研究团队:Conecta.ai(ufrn.br)摘要1.引言2.GEMMA2:通用集成机器模型算法2.1模型架构2.2预训练2.3...
恩智浦eIQ Time Series Studio工具使用教程之数据操作
上期讲到的“Utilities”模块中“Data Intelligence”数据智能工具。数据智能工具可以帮助用户评估数据集的平衡性,确定各个数据通道/...
边缘计算中的机器学习:基于 Linux 系统的实时推理模型部署与工业集成!
你好,旅行者!欢迎来到Medium的这一角落。在本文中,我们将把一个机器学习模型(神经网络)部署到边缘设备上,利用从ModbusTCP寄存器获取的实时数...
恩智浦eIQ Time Series Studio工具使用教程之数据智能
Hello 大家好,今天继续为大家带来eIQ Time Series Studio系列讲解,上期咱们讲到“Utilities”模块中的“Data Lab...
机载高光谱系统与机器学习算法结合实践丨双利合谱机载高光谱相机在小麦监测应用
研究在江苏扬州的盆栽试验田与农田实验区开展数据采集,利用GaiaSky mini2 VN 高光谱相机和DJI M600无人机在不同土壤湿度和生长期条件下...
汽车行业正处于数字化复兴时期。汽车制造的线性、劳动密集型流程已几乎一去不复返。如今,汽车制造已成为机器人技术、人工智能和数据驱动的协同工作,机器不仅能够...
IBM 被评为 2025 年 Gartner? 数据科学和机器学习平台魔力象限领导者
作者: Bruno Aziza?, IBM 数据、人工智能和战略分析副总裁 Stephen Mortefolio, IBM 数据和人工智能产品市场副总裁...
腾讯会议---六月直播 1.机器学习赋能的智能光子学器件系统研究与应用 2.COMSOL声学多物理场仿真技术与应用 3.超表面逆向设计及前沿应用(从基础...
2025-06-04 标签:机器学习 194 0
2025 年上半年,继年初被 AAAI、ICLR、DAC 三大国际顶会收录 5 篇论文后,后摩智能近期又有 4 篇论文入选CVPR、ICML、ACL三大...
随着毕业季临近,新一批毕业生即将开始新的旅程。他们希望用自己的热情和技能对世界产生真正、切实的影响。
编辑推荐厂商产品技术软件/工具OS/语言教程专题
电机控制 | DSP | 氮化镓 | 功率放大器 | ChatGPT | 自动驾驶 | TI | 瑞萨电子 |
BLDC | PLC | 碳化硅 | 二极管 | OpenAI | 元宇宙 | 安森美 | ADI |
无刷电机 | FOC | IGBT | 逆变器 | 文心一言 | 5G | 英飞凌 | 罗姆 |
直流电机 | PID | MOSFET | 传感器 | 人工智能 | 物联网 | NXP | 赛灵思 |
步进电机 | SPWM | 充电桩 | IPM | 机器视觉 | 无人机 | 三菱电机 | ST |
伺服电机 | SVPWM | 光伏发电 | UPS | AR | 智能电网 | 国民技术 | Microchip |
开关电源 | 步进电机 | 无线充电 | LabVIEW | EMC | PLC | OLED | 单片机 |
5G | m2m | DSP | MCU | ASIC | CPU | ROM | DRAM |
NB-IoT | LoRa | Zigbee | NFC | 蓝牙 | RFID | Wi-Fi | SIGFOX |
Type-C | USB | 以太网 | 仿真器 | RISC | RAM | 寄存器 | GPU |
语音识别 | 万用表 | CPLD | 耦合 | 电路仿真 | 电容滤波 | 保护电路 | 看门狗 |
CAN | CSI | DSI | DVI | Ethernet | HDMI | I2C | RS-485 |
SDI | nas | DMA | HomeKit | 阈值电压 | UART | 机器学习 | TensorFlow |
Arduino | BeagleBone | 树莓派 | STM32 | MSP430 | EFM32 | ARM mbed | EDA |
示波器 | LPC | imx8 | PSoC | Altium Designer | Allegro | Mentor | Pads |
OrCAD | Cadence | AutoCAD | abg欧博DFM | Keil | MATLAB | MPLAB | Quartus |
C++ | Java | Python | JavaScript | node.js | RISC-V | verilog | Tensorflow |
Android | iOS | linux | RTOS | FreeRTOS | LiteOS | RT-THread | uCOS |
DuerOS | Brillo | Windows11 | HarmonyOS |