一个最简单的设备树必须包含根节点,cpus节点,memory节点。根节点的名字及全路径都是“/”,至少需要包含model和compatible两个属性。model属性我们在属性那节已经说过是用来描述产品型号的,类型为字符串,推荐的格式为“manufacturer,model-number”(非强制的)。根节点的model属性描述的是板子的型号或者芯片平台的型号,如:
model = "Atmel AT91SAM9G20 family SoC"
model = "Samsung SMDK5420 board based on EXYNOS5420"
从软件的层面讲model属性仅仅表示一个名字而已,没有更多的作用。compatible属性则不同,该属性决定软件如何匹配硬件对硬件进行初始化。属性那一节我们说过compatible属性的类型是字符串数组,按照范围从小到大的顺序排列,每个字符串表示一种匹配类型。根节点的compatible属性表示平台如何匹配,比如‘compatible = "samsung,smdk5420", "samsung,exynos5420", "samsung,exynos5"’,表示软件应该首先匹配'samsung,smdk5420',这个是一款开发板。如果无法匹配,再试着匹配"samsung,exynos5420",这个是一款芯片平台。如果还是无法匹配,还可以试着匹配 "samsung,exynos5",这是一个系列的芯片平台。这里说的匹配是指软件根据该信息找到对应的代码,如对应的初始化函数。
根节点表示的是整个板子或者芯片平台,所以在系统初始化比较早的时候就需要确认是什么平台,怎样初始化。对于Linux,是通过在start_kernel函数调用setup_arch函数实现的。不同的架构,setup_arch函数的实现不同,对于arm架构,setup_arch函数源代码位于arch/arm/kernel/setup.c中。以下是该函数的部分源代码(代码来自内核版本4.4-rc7的官方版本,本节后边所有代码都来自该版本)。
?935 void __init setup_arch(char **cmdline_p)
?936 {
?937???? const struct machine_desc *mdesc;
?938?
?939???? setup_processor();
?940???? mdesc = setup_machine_fdt(__atags_pointer);
?941???? if (!mdesc)
?942???????? mdesc = setup_machine_tags(__atags_pointer, __machine_arch_type);
?943???? machine_desc = mdesc;
?944???? machine_name = mdesc->name;
第940行setup_machine_fdt函数的输入是设备树(DTB)首地址,返回的mdesc是描述平台信息的结构体。还记得我们在概述那节说过启动程序如uboot把设备树读到内存中,然后在启动内核的同时将设备树首地址传给内核,此处__atags_pointer就是启动程序传给内核的设备树地址(此时内存中的设备树已经是DTB形式)。setup_machine_fdt中的fdt是flat device tree的缩写,fdt的意思是说设备树在内存中是在一块连续地址存储的,fdt和dtb说的都是同一个东西。setup_machine_tags是在设备树初始化失败的时候才调用的,所以不用管他。machine_desc和machine_name都是静态全局变量,用来保存指针方便后边引用的。为了更好的理解setup_machine_fdt具体实现了什么功能,我们首先看下machine_desc结构体。不同的架构,该结构体定义差别很大,arm架构源代码位于arch/arm/include/asm/mach/arch.h,复制如下:
?
?27 struct machine_desc {
?28???? unsigned int??????? nr;???? /* architecture number? */
?29???? const char????? *name;????? /* architecture name??? */
?30???? unsigned long?????? atag_offset;??? /* tagged list (relative) */
?31???? const char *const?? *dt_compat; /* array of device tree
?32????????????????????????? * 'compatible' strings */
?33?
?34???? unsigned int??????? nr_irqs;??? /* number of IRQs */
?35?
?36 #ifdef CONFIG_ZONE_DMA
?37???? phys_addr_t???? dma_zone_size;? /* size of DMA-able area */
?38 #endif
?39?
?40???? unsigned int??????? video_start;??? /* start of video RAM?? */
?41???? unsigned int??????? video_end;? /* end of video RAM */
?42?
?43???? unsigned char?????? reserve_lp0 :1; /* never has lp0??? */
?44???? unsigned char?????? reserve_lp1 :1; /* never has lp1??? */
?45???? unsigned char?????? reserve_lp2 :1; /* never has lp2??? */
?46???? enum reboot_mode??? reboot_mode;??? /* default restart mode */
?47???? unsigned??????? l2c_aux_val;??? /* L2 cache aux value?? */
?48???? unsigned??????? l2c_aux_mask;?? /* L2 cache aux mask??? */
?49???? void??????????? (*l2c_write_sec)(unsigned long, unsigned);
?50???? const struct smp_operations *smp;?? /* SMP operations?? */
?51???? bool??????????? (*smp_init)(void);
?52???? void??????????? (*fixup)(struct tag *, char **);
?53???? void??????????? (*dt_fixup)(void);
?54???? long long?????? (*pv_fixup)(void);
?55???? void??????????? (*reserve)(void);/* reserve mem blocks? */
?56???? void??????????? (*map_io)(void);/* IO mapping function? */
?57???? void??????????? (*init_early)(void);
?58???? void??????????? (*init_irq)(void);
?59???? void??????????? (*init_time)(void);
?60???? void??????????? (*init_machine)(void);
?61???? void??????????? (*init_late)(void);
?62 #ifdef CONFIG_MULTI_IRQ_HANDLER
?63???? void??????????? (*handle_irq)(struct pt_regs *);
?64 #endif
?65???? void??????????? (*restart)(enum reboot_mode, const char *);
?66 };
?67?
从以上结构体的注释可以看出,该结构体包含了非常多的信息。注意第31行的dt_compat变量,该变量就是用来匹配设备树的compatible属性的。
setup_machine_fdt函数的实现也是架构相关的,arm架构源代码位于arch/arm/kernel/devtree.c,复制代码如下:
203 /**???? ?
204? * setup_machine_fdt - Machine setup when an dtb was passed to the kernel
205? * @dt_phys: physical address of dt blob
206? *? ?
207? * If a dtb was passed to the kernel in r2, then use it to choose the
208? * correct machine_desc and to setup the system.
209? */?
210 const struct machine_desc * __init setup_machine_fdt(unsigned int dt_phys)
211 {?? ?
212???? const struct machine_desc *mdesc, *mdesc_best = NULL;
213?
214 #ifdef CONFIG_ARCH_MULTIPLATFORM
215???? DT_MACHINE_START(GENERIC_DT, "Generic DT based system")
216???? MACHINE_END
217?
218???? mdesc_best = &__mach_desc_GENERIC_DT;
219 #endif
220?
221???? if (!dt_phys || !early_init_dt_verify(phys_to_virt(dt_phys)))
222???????? return NULL;
223?
224???? mdesc = of_flat_dt_match_machine(mdesc_best, arch_get_next_mach);
225?
226???? if (!mdesc) {
227???????? const char *prop;
228???????? int size;
229???????? unsigned long dt_root;
230?
231???????? early_print("
Error: unrecognized/unsupported "
232???????????????? "device tree compatible list:
[ ");
233?
234???????? dt_root = of_get_flat_dt_root();
235???????? prop = of_get_flat_dt_prop(dt_root, "compatible", &size);
236???????? while (size > 0) {
237???????????? early_print("'%s' ", prop);
238???????????? size -= strlen(prop) + 1;
239???????????? prop += strlen(prop) + 1;
240???????? }
241???????? early_print("]
");
242?
243???????? dump_machine_table(); /* does not return */
244???? }
245?
246???? /* We really don't want to do this, but sometimes firmware provides buggy data */
247???? if (mdesc->dt_fixup)
248???????? mdesc->dt_fixup();
249?
250???? early_init_dt_scan_nodes();
251?
252???? /* Change machine number to match the mdesc we're using */
253???? __machine_arch_type = mdesc->nr;
254?
255???? return mdesc;
256 }
第221行检查fdt指针是否为空并且调用early_init_dt_verify函数,该函数代码位于drivers/of/fdt.c,这个函数算是of模块(还记得么?是open firmware的缩写)的第一个函数,复制代码如下:
1060?
1061 bool __init early_init_dt_verify(void *params)
1062 {
1063???? if (!params)
1064???????? return false;
1065?
1066???? /* check device tree validity */
1067???? if (fdt_check_header(params))
1068???????? return false;
1069?
1070???? /* Setup flat device-tree pointer */
1071???? initial_boot_params = params;
1072???? of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1073???????????????? fdt_totalsize(initial_boot_params));
1074???? return true;
1075 }
early_init_dt_verify首先检查fdt头部的合法性,然后设置fdt全局变量以及计算crc。这个initial_boot_params变量后边在访问设备树的时候还会用到。继续看前边第224行,of_flat_dt_match_machine函数算是of模块的第二个函数吧,在分析这个函数前,我们首先分析这个函数的第二个参数arch_get_next_mach,这是一个函数指针,arm架构的实现位于arch/arm/kernel/devtree.c,复制代码如下:
190 static const void * __init arch_get_next_mach(const char *const **match)
191 {
192???? static const struct machine_desc *mdesc = __arch_info_begin;
193???? const struct machine_desc *m = mdesc;
194?
195???? if (m >= __arch_info_end)
196???????? return NULL;
197?
198???? mdesc++;
199???? *match = m->dt_compat;
200???? return m;
201 } ?
这个函数很简单,注意的是mdesc是静态局部变量,第一次调用指向__arch_info_begin,后边每次调用都mdesc++,如果超过了__arch_info_end就返回NULL。以上代码说明在__arch_info_begin和__arch_info_end两个地址之间存储着多个machine_desc变量(也可能是一个),该函数遍历这些变量,通过match参数返回所有machine_desc结构体的dt_compat变量指针。问题是__arch_info_begin和__arch_info_end地址是怎么来的呢?在arch/arm/kernel/vmlinux.lds.S连接脚本中定义了.arch.info.init段,__arch_info_begin和__arch_info_end地址分别是该段的首尾地址。
188???? .init.arch.info : {
189???????? __arch_info_begin = .;
190???????? *(.arch.info.init)
191???????? __arch_info_end = .;
192???? }
那么.init.arch.info段的内容怎么来的呢?这就要参考DT_MACHINE_START和MACHINE_END宏了,arm架构的定义在arch/arm/include/asm/mach/arch.h文件,如下所示:
?94 #define DT_MACHINE_START(_name, _namestr)??????
?95 static const struct machine_desc __mach_desc_##_name???
?96? __used????????????????????????
?97? __attribute__((__section__(".arch.info.init"))) = {???
?98???? .nr???? = ~0,??????????????
?99???? .name?????? = _namestr,
100?
101 #endif
从该宏代码看出他定义了一个machine_desc类型的静态局部变量,该变量位于.arch.info.init段中。参考arch/arm/mach-exynos/exynos.c中如下代码,以下代码在.arch.info.init段定义了一个名字为__mach_desc_EXYNOS_DT,类型为machine_desc的静态局部变量,并且该变量的dt_compat字符串矩阵中有"samsung,exynos5420"的字符串。
277 static char const *const exynos_dt_compat[] __initconst = {
278???? "samsung,exynos3",
279???? "samsung,exynos3250",
280???? "samsung,exynos4",
281???? "samsung,exynos4210",
282???? "samsung,exynos4212",
283???? "samsung,exynos4412",
284???? "samsung,exynos4415",
285???? "samsung,exynos5",
286???? "samsung,exynos5250",
287???? "samsung,exynos5260",
288???? "samsung,exynos5420",
289???? "samsung,exynos5440",
290???? NULL
291 };
?
319 DT_MACHINE_START(EXYNOS_DT, "SAMSUNG EXYNOS (Flattened Device Tree)")
320???? /* Maintainer: Thomas Abraham */
321???? /* Maintainer: Kukjin Kim */
322???? .l2c_aux_val??? = 0x3c400001,
323???? .l2c_aux_mask?? = 0xc20fffff,
324???? .smp??????? = smp_ops(exynos_smp_ops),
325???? .map_io???? = exynos_init_io,
326???? .init_early = exynos_firmware_init,
327???? .init_irq?? = exynos_init_irq,
328???? .init_machine?? = exynos_dt_machine_init,
329???? .init_late? = exynos_init_late,
330???? .dt_compat? = exynos_dt_compat,
331???? .reserve??? = exynos_reserve,
332???? .dt_fixup?? = exynos_dt_fixup,
333 MACHINE_END
我们已经知道了get_next_compat指针的具体实现了,现在继续看of_flat_dt_match_machine。从第732行开始的循环就是遍历.arch.info.init段中所有的dt_compat变量,然后通过of_flat_dt_match计算一个分数,并且寻找那个分数最小的。
?713 /**
?714? * of_flat_dt_match_machine - Iterate match tables to find matching machine.
?715? *
?716? * @default_match: A machine specific ptr to return in case of no match.
?717? * @get_next_compat: callback function to return next compatible match table.
?718? *
?719? * Iterate through machine match tables to find the best match for the machine
?720? * compatible string in the FDT.
?721? */
?722 const void * __init of_flat_dt_match_machine(const void *default_match,
?723???????? const void * (*get_next_compat)(const char * const**))
?724 {
?725???? const void *data = NULL;
?726???? const void *best_data = default_match;
?727???? const char *const *compat;
?728???? unsigned long dt_root;
?729???? unsigned int best_score = ~1, score = 0;
?730?????? ?
?731???? dt_root = of_get_flat_dt_root();
?732???? while ((data = get_next_compat(&compat))) {
?733???????? score = of_flat_dt_match(dt_root, compat);
?734???????? if (score > 0 && score < best_score) {
?735???????????? best_data = data;
?736???????????? best_score = score;
?737???????? }
?738???? }
?....
?759???? return best_data;
?760 }
?761?
of_flat_dt_match_machine的其余部分代码都是出错处理及打印,现在我们看of_flat_dt_match的实现,该函数仅仅是直接调用of_fdt_match而已,不同的是增加了initial_boot_params参数(还记得我们说过前边说过的这个变量的初始化吧,其实这就是内核中的一个简单封装而已)。
?685 /**
?686? * of_flat_dt_match - Return true if node matches a list of compatible values
?687? */
?688 int __init of_flat_dt_match(unsigned long node, const char *const *compat)
?689 { ?
?690???? return of_fdt_match(initial_boot_params, node, compat);
?691 } ?
of_fdt_match函数从142行开始遍历compat数组的每一个字符串,然后通过of_fdt_is_compatible函数计算匹配度(以最小的数值作为最终的结果)。代码到这个地方已经很好理解了,compat中的数据来自内核的.arch.info.init段,这个段表示内核支持的平台,blob是设备树其实地址,通过node节点指定根节点的compatible属性,然后计算匹配度。还记得我们前边说过的compatible属性包含多个字符串,从前向后范围越来越大,优先匹配前边的,这个地方代码计算分数(score变量)就是这个目的。
?131 /**
?132? * of_fdt_match - Return true if node matches a list of compatible values
?133? */
?134 int of_fdt_match(const void *blob, unsigned long node,
?135????????????????? const char *const *compat)
?136 {
?137???? unsigned int tmp, score = 0;
?138?
?139???? if (!compat)
?140???????? return 0;
?141?
?142???? while (*compat) {
?143???????? tmp = of_fdt_is_compatible(blob, node, *compat);
?144???????? if (tmp && (score == 0 || (tmp < score)))
?145???????????? score = tmp;
?146???????? compat++;
?147???? }
?148?
?149???? return score;
?150 }
继续看of_fdt_is_compatible函数的实现,第97行已经看到找该节点下的"compatible"属性了。
? 80 /**
? 81? * of_fdt_is_compatible - Return true if given node from the given blob has
? 82? * compat in its compatible list
? 83? * @blob: A device tree blob
? 84? * @node: node to test
? 85? * @compat: compatible string to compare with compatible list.
? 86? *
? 87? * On match, returns a non-zero value with smaller values returned for more
? 88? * specific compatible values.
? 89? */
? 90 int of_fdt_is_compatible(const void *blob,
? 91?????????????? unsigned long node, const char *compat)
? 92 {
? 93???? const char *cp;
? 94???? int cplen;
? 95???? unsigned long l, score = 0;
? 96?
? 97???? cp = fdt_getprop(blob, node, "compatible", &cplen);
? 98???? if (cp == NULL)
? 99???????? return 0;
?100???? while (cplen > 0) {
?101???????? score++;
?102???????? if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
?103???????????? return score;
?104???????? l = strlen(cp) + 1;
?105???????? cp += l;
?106???????? cplen -= l;
?107???? }
?108?
?109???? return 0;
?110 }
关于根节点的"compatible"属性我们就说到这,一句话总结下就是内核通过"compatible"属性找到对应的平台描述信息,按照范围从小到大尽量匹配范围最小的,如果匹配不到,那么说明内核不支持该平台,系统将在初始化的时候就出错。
根节点还可能包含的属性为#address-cells和#size-cells,规范中说明这两个属性是必须的,实际应用时是可选的,还记得属性那一节说这两个属性如果没有都是有默认值的,#address-cells默认值为2,#size-cells默认值为1。根节点下必须包含的子节点为cpus和memory,后边会说明cpus下边还有每个cpu的子节点,memory节点下边定义的就是memory的起始地址及大小,所以根节点的#address-cells和#size-cells属性实际上说明的就是从cpu角度看系统总线的地址长度和大小。
规范中还写根节点下边必须有一个epapr-version属性用来描述设备树的版本,实际上在linux中根本不用这个属性。
?
评论