0
  • ÁÄÌìÏûÏ¢
  • ϵͳÏûÏ¢
  • ÆÀÂÛÓë»Ø¸´
µÇ¼ºóÄã¿ÉÒÔ
  • ÏÂÔØº£Á¿×ÊÁÏ
  • ѧϰÔÚÏ߿γÌ
  • ¹Û¿´¼¼ÊõÊÓÆµ
  • дÎÄÕÂ/·¢Ìû/¼ÓÈëÉçÇø
»áÔ±ÖÐÐÄ
´´×÷ÖÐÐÄ

ÍêÉÆ×ÊÁÏÈøü¶àС»ï°éÈÏʶÄ㣬»¹ÄÜÁìÈ¡20»ý·ÖŶ£¬Á¢¼´ÍêÉÆ>

3ÌìÄÚ²»ÔÙÌáʾ

ΪʲôҪʹÓÃԤѵÁ·Ä£ÐÍ£¿8ÖÖÓÅÐãԤѵÁ·Ä£ÐÍ´óÅ̵ã

µç×Ó¹¤³Ìʦ ? À´Ô´£ºlp ? 2019-04-04 11:26 ? ´ÎÔĶÁ
¼ÓÈë½»Á÷Ⱥ
΢ÐÅСÖúÊÖ¶þάÂë

ɨÂëÌí¼ÓСÖúÊÖ

¼ÓÈ빤³Ìʦ½»Á÷Ⱥ

Èç½ñ£¬×ÔÈ»ÓïÑÔ´¦Àí£¨NLP£©¿Éν±éµØ¿ª»¨£¬¿ÉÒÔ˵ÕýÊÇÎÒÃÇÁ˽âËüµÄºÃʱ»ú¡£

NLPµÄ¿ìËÙÔö³¤Ö÷ÒªµÃÒæÓÚͨ¹ýԤѵÁ·Ä£ÐÍʵÏÖ×ªÒÆÑ§Ï°µÄ¸ÅÄî¡£ÔÚNLPÖУ¬×ªÒÆÑ§Ï°±¾ÖÊÉÏÊÇÖ¸ÔÚÒ»¸öÊý¾Ý¼¯ÉÏѵÁ·Ä£ÐÍ£¬È»ºóµ÷Õû¸ÃÄ£ÐÍÒÔ±ãÔÚ²»Í¬Êý¾Ý¼¯ÉÏʵÏÖNLPµÄ¹¦ÄÜ¡£

ÕâÒ»Í»ÆÆÊ¹NLPÓ¦ÓñäµÃÈç´Ë¼òµ¥£¬ÓÈÆäÊÇÄÇЩûÓÐʱ¼ä»ò×ÊÔ´´ÓÍ·¿ªÊ¼¹¹½¨NLPÄ£Ð͵ÄÈË¡£»òÕߣ¬¶ÔÓÚÏëҪѧϰ»òÕß´ÓÆäËûÁìÓò¹ý¶Éµ½NLPµÄÐÂÊÖÀ´Ëµ£¬Õâ¼òÖ±¾ÍÊÇÍêÃÀ¡£

ΪʲôҪʹÓÃԤѵÁ·Ä£ÐÍ£¿

Ä£Ð͵Ä×÷ÕßÒѾ­Éè¼Æ³öÁË»ù׼ģÐÍ£¬ÕâÑùÎÒÃǾͿÉÒÔÔÚ×Ô¼ºµÄNLPÊý¾Ý¼¯ÉÏʹÓøÃԤѵÁ·Ä£ÐÍ£¬¶øÎÞÐè´ÓÍ·¿ªÊ¼¹¹½¨Ä£ÐÍÀ´½â¾öÀàËÆµÄÎÊÌâ

¾¡¹ÜÐèÒª½øÐÐһЩ΢µ÷£¬µ«ÕâΪÎÒÃǽÚÊ¡ÁË´óÁ¿µÄʱ¼äºÍ¼ÆËã×ÊÔ´

ÔÚ±¾ÎÄÖÐչʾÁËÄÇЩÖúÄ㿪ʼNLPÖ®ÂõĶ¥¼¶Ô¤ÑµÁ·Ä£ÐÍ£¬ÒÔ¼°¸ÃÁìÓòµÄ×îÐÂÑо¿³É¹û¡£Òª²é¿´¹ØÓÚ¼ÆËã»úÊÓ¾õÖеĶ¥¼¶Ô¤ÑµÁ·Ä£Ð͵ÄÎÄÕ£¬Çë²ÎÔÄ£º

https://www.analyticsvidhya.com/blog/2018/07/top-10-pretrained-models-get-started-deep-learning-part-1-computer-vision/?utm_source=blog&utm_medium=top-pretrained-models-nlp-article

±¾Î學ǵÄNLPԤѵÁ·Ä£ÐÍ

ÎÒ¸ù¾ÝÓ¦Óó¡¾°½«Ô¤ÑµÁ·Ä£ÐÍ·ÖΪÈýÀࣺ

¶àÓÃ;NLPÄ£ÐÍ

ULMFiT

Transformer

¹È¸èµÄBERT

Transformer-XL

OpenAIµÄGPT-2

´ÊǶÈëNLPÄ£ÐÍ

ELMo

Flair

ÆäËûԤѵÁ·Ä£ÐÍ

StanfordNLP

¶àÓÃ;NLPÄ£ÐÍ

¶àÓÃ;ģÐÍÔÚNLPÁìÓòÀïһֱΪÈËÃÇËù¹Ø×¢¡£ÕâЩģÐÍΪÌṩÁËÐí¶àÁîÈ˸ÐÐËȤµÄNLPÓ¦Óà - »úÆ÷·­Òë¡¢ÎÊ´ðϵͳ¡¢ÁÄÌì»úÆ÷ÈË¡¢Çé¸Ð·ÖÎöµÈ¡£ÕâЩ¶àÓÃ;NLPÄ£Ð͵ĺËÐÄÊÇÓïÑÔ½¨Ä£µÄÀíÄî¡£

¼òµ¥À´Ëµ£¬ÓïÑÔÄ£Ð͵ÄÄ¿µÄÊÇÔ¤²âÓï¾äÐòÁÐÖеÄÏÂÒ»¸öµ¥´Ê»ò×Ö·û£¬ÔÚÎÒÃÇÁ˽â¸÷Ä£ÐÍʱ¾Í»áÃ÷°×ÕâÒ»µã¡£

Èç¹ûÄãÊÇNLP°®ºÃÕߣ¬ÄÇôһ¶¨»áϲ»¶ÏÖÔÚÕⲿ·Ö£¬ÈÃÎÒÃÇÉîÈëÑо¿5¸ö×îÏȽøµÄ¶àÓÃ;NLPÄ£ÐÍ¿ò¼Ü¡£ÕâÀïÎÒÌṩÁËÿÖÖÄ£Ð͵ÄÑо¿ÂÛÎĺÍԤѵÁ·Ä£Ð͵ÄÁ´½Ó£¬À´Ì½Ë÷һϰɣ¡

ULMFiTÄ£ÐÍ

ULMFiTÓÉfast.ai£¨Éî¶ÈÑ§Ï°ÍøÕ¾£©µÄJeremy HowardºÍDeepMind£¨Ò»¼ÒÈ˹¤ÖÇÄÜÆóÒµ£©µÄSebastian RuderÌá³ö²¢Éè¼Æ¡£¿ÉÒÔÕâô˵£¬ULMFiT¿ªÆôÁË×ªÒÆÑ§Ï°µÄÈȳ±¡£

ÕýÈçÎÒÃÇÔÚ±¾ÎÄÖÐËùÊö£¬ULMFiTʹÓÃÐÂÓ±µÄNLP¼¼ÊõÈ¡µÃÁËÁîÈËÖõÄ¿µÄ³É¹û¡£¸Ã·½·¨¶ÔԤѵÁ·ÓïÑÔÄ£ÐͽøÐÐ΢µ÷£¬½«ÆäÔÚWikiText-103Êý¾Ý¼¯£¨Î¬»ù°Ù¿ÆµÄ³¤ÆÚÒÀÀµÓïÑÔ½¨Ä£Êý¾Ý¼¯WikitextÖ®Ò»£©ÉÏѵÁ·£¬´Ó¶øµÃµ½ÐÂÊý¾Ý¼¯£¬Í¨¹ýÕâÖÖ·½Ê½Ê¹Æä²»»áÍü¼Ç֮ǰѧ¹ýµÄÄÚÈÝ¡£

ULMFiT±ÈÐí¶àÏȽøµÄÎı¾·ÖÀàÄ£ÐÍ»¹ÒªºÃ¡£ÎÒϲ°®ULMFiTÊÇÒòΪËüÖ»ÐèÒªºÜÉÙµÄÊý¾Ý¾Í¿ÉÒÔÀ´²úÉúÁîÈËÓ¡ÏóÉî¿ÌµÄ½á¹û£¬Ê¹ÎÒÃǸüÈÝÒ×Àí½â²¢ÔÚ»úÆ÷ÉÏʵÏÖËü£¡

Ò²ÐíÄã²»ÖªµÀULMFiTÆäʵÊÇUniversal Language Model Fine-Tuning£¨Í¨ÓÃÓïÑÔÄ£ÐÍ΢µ÷£©µÄ¼ò³Æ¡£¡°Í¨Óá±Ò»´ÊÔÚÕâÀï·Ç³£ÌùÇÐ - ¸Ã¿ò¼Ü¼¸ºõ¿ÉÒÔÓ¦ÓÃÓÚÈκÎNLPÈÎÎñ¡£

ÏëÖªµÀÓйØULMFiTµÄ¸ü¶àÐÅÏ¢£¬Çë²ÎÔÄÒÔÏÂÎÄÕºÍÂÛÎÄ£º

ʹÓÃULMFiTÄ£ÐͺÍPython µÄfastai¿â½øÐÐÎı¾·ÖÀࣨNLP£©½Ì³Ì

https://www.analyticsvidhya.com/blog/2018/11/tutorial-text-classification-ulmfit-fastai-library/?utm_source=blog&utm_medium=top-pretrained-models-nlp-article

ULMFiTµÄԤѵÁ·Ä£ÐÍÂÛÎÄ

https://www.paperswithcode.com/paper/universal-language-model-fine-tuning-for-text

ÆäËûÑо¿ÂÛÎÄ

https://arxiv.org/abs/1801.06146

TransformerÄ£ÐÍ

Transformer¼Ü¹¹ÊÇNLP½üÆÚ×îºËÐĵķ¢Õ¹£¬2017ÄêÓɹȸèÌá³ö¡£µ±Ê±£¬ÓÃÓÚÓïÑÔ´¦ÀíÈÎÎñ£¨Èç»úÆ÷·­ÒëºÍÎÊ´ðϵͳ£©µÄÊÇÑ­»·Éñ¾­ÍøÂ磨RNN£©¡£

Transformer¼Ü¹¹µÄÐÔÄܱÈRNNºÍCNN£¨¾í»ýÉñ¾­ÍøÂ磩ҪºÃ£¬ÑµÁ·Ä£ÐÍËùÐèµÄ¼ÆËã×ÊÔ´Ò²¸üÉÙ£¬Õâ¶ÔÓÚÿ¸öʹÓÃNLPµÄÈËÀ´Ëµ¶¼ÊÇ˫Ӯ¡£¿´¿´ÏÂÃæµÄ±È½Ï£º

¸÷Ä£Ð͵ÄÓ¢µÂ·­ÒëÖÊÁ¿

¸ù¾ÝGoogleµÄ˵·¨£¬TransformerÄ£ÐÍ¡°Ó¦ÓÃÁËÒ»ÖÖ×Ô×¢ÒâÁ¦»úÖÆ£¬¿ÉÖ±½ÓÄ£Äâ¾ä×ÓÖÐËùÓе¥´ÊÖ®¼äµÄ¹ØÏµ£¬¶øÎÞÐèÀí»áÆä¸÷×ÔµÄλÖÃÈçºÎ¡±¡£ËüʹÓù̶¨³¤¶ÈÉÏÏÂÎÄ£¨Ò²¾ÍÊÇÇ°ÃæµÄµ¥´Ê£©À´ÊµÏÖ¡£Ì«¸´ÔÓÁË£¿Ã»Ê£¬ÎÒÃǾÙÒ»Àý×Ó¼òµ¥ËµÃ÷¡£

Óо仰¡°She found the shells on the bank of the river.¡±´ËʱģÐÍÐèÒªÃ÷°×£¬ÕâÀïµÄ¡°bank¡±ÊÇÖ¸°¶±ß£¬¶ø²»ÊǽðÈÚ»ú¹¹£¨ÒøÐУ©¡£TransformerÄ£ÐÍÖ»ÐèÒ»²½¾ÍÄÜÀí½âÕâÒ»µã¡£ÎÒÏ£ÍûÄãÄÜÔĶÁÏÂÃæÁ´½ÓµÄÍêÕûÂÛÎÄ£¬ÒÔÁ˽âÆä¹¤×÷Ô­Àí¡£Ëü¿Ï¶¨»áÈÃÄã´ó³ÔÒ»¾ª¡£

¹È¸èÈ¥Äê·¢²¼ÁËÒ»¿îÃûΪUniversal TransformerµÄ¸Ä½ø°æTransformerÄ£ÐÍ¡£Ëü»¹ÓÐÒ»¸ö¸üУ¬¸üÖ±¹ÛµÄÃû×Ö£¬½ÐTransformer-XL£¬ÎÒÃǽ«ÔÚºóÃæ½éÉÜ¡£

ÏëѧϰºÍÔĶÁ¸ü¶àÓйØTransformerµÄÐÅÏ¢£¬Çë·ÃÎÊ£º

¹È¸è¹Ù·½²©ÎÄ

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

TransformerԤѵÁ·Ä£ÐÍÂÛÎÄ¡¶Attention Is All You Need¡·

https://www.paperswithcode.com/paper/attention-is-all-you-need

ÆäËûÑо¿ÂÛÎÄ

https://arxiv.org/abs/1706.03762

BERTÄ£ÐÍ£¨¹È¸è£©

¹È¸è·¢²¼BERT¿ò¼Ü²¢¿ª·ÅÆäÔ´´úÂëÔÚÒµ½çÏÆÆð²¨À½£¬ÉõÖÁÓÐÈËÈÏΪÕâÊÇ·ñ±êÖ¾×Å¡° NLPÐÂʱ´ú¡±µÄµ½À´¡£µ«ÖÁÉÙÓÐÒ»µã¿ÉÒԿ϶¨£¬BERTÊÇÒ»¸ö·Ç³£ÓÐÓõĿò¼Ü£¬¿ÉÒԺܺõØÍƹ㵽¸÷ÖÖNLPÈÎÎñÖС£

BERTÊÇBidirectionalEncoderRepresentations£¨Ë«Ïò±àÂëÆ÷±íÕ÷£©µÄ¼ò³Æ¡£Õâ¸öÄ£ÐÍ¿ÉÒÔͬʱ¿¼ÂÇÒ»¸ö´ÊµÄÁ½²à£¨×ó²àºÍÓҲࣩÉÏÏÂÎÄ£¬¶øÒÔǰµÄËùÓÐÄ£ÐÍÿ´Î¶¼ÊÇÖ»¿¼ÂǴʵĵ¥²à£¨×ó²à»òÓҲࣩÉÏÏÂÎÄ¡£ÕâÖÖË«Ïò¿¼ÂÇÓÐÖúÓÚÄ£Ð͸üºÃµØÀí½âµ¥´ÊµÄÉÏÏÂÎÄ¡£´ËÍ⣬BERT¿ÉÒÔ½øÐжàÈÎÎñѧϰ£¬Ò²¾ÍÊÇ˵£¬Ëü¿ÉÒÔͬʱִÐв»Í¬µÄNLPÈÎÎñ¡£

BERTÊÇÊ׸öÎ޼ලµÄ¡¢Éî¶ÈË«ÏòԤѵÁ·NLPÄ£ÐÍ£¬½öʹÓô¿Îı¾ÓïÁÏ¿â½øÐÐѵÁ·¡£

ÔÚ·¢²¼Ê±£¬¹È¸è³ÆBERT½øÐÐÁË11¸ö×ÔÈ»ÓïÑÔ´¦Àí£¨NLP£©ÈÎÎñ£¬²¢²úÉú¸ßˮƽµÄ½á¹û£¬Õâһ׳¾ÙÒâÒåÉîÔ¶£¡Äã¿ÉÒÔÔڶ̶̼¸¸öСʱÄÚ£¨ÔÚµ¥¸öGPUÉÏ£©Ê¹ÓÃBERTѵÁ·ºÃ×Ô¼ºµÄNLPÄ£ÐÍ£¨ÀýÈçÎÊ´ðϵͳ£©¡£

Ïë»ñµÃ¸ü¶àÓйØBERTµÄ×ÊÔ´£¬Çë²ÎÔÄ£º

¹È¸è¹Ù·½²©ÎÄ

https://ai.googleblog.com/2018/11/open-sourcing-bert-state-of-art-pre.html

BERTԤѵÁ·Ä£ÐÍÂÛÎÄ

https://www.paperswithcode.com/paper/bert-pre-training-of-deep-bidirectional#code

ÆäËûÑо¿ÂÛÎÄ

https://arxiv.org/pdf/1810.04805.pdf

Transformer-XLÄ£ÐÍ£¨¹È¸è£©

´Ó³¤ÆÚÀ´¿´£¬¹È¸è·¢²¼µÄ°æ±¾¶ÔNLP¶øÑÔÊǷdz£ÖØÒªµÄ¡£Èç¹ûÄãÊdzõѧÕߣ¬Õâ¸ö¸ÅÄî¿ÉÄÜ»áÓе㼬ÊÖ£¬ËùÒÔÎÒ¹ÄÀøÄã¶à¶Á¼¸±éÀ´ÕÆÎÕËü¡£ÎÒ»¹ÔÚ±¾½ÚÏÂÃæÌṩÁ˶àÖÖ×ÊÔ´À´°ïÖúÄ㿪ʼʹÓÃTransformer-XL¡£

ÏëÏóһϡª¡ªÄã¸Õ¶Áµ½Ò»±¾ÊéµÄÒ»°ë£¬Í»È»³öÏÖÁËÕâ±¾Ê鿪ͷÌáµ½µÄÒ»¸ö´Ê»òÕßÒ»¾ä»°Ê±£¬¾ÍÄÜ»ØÒäÆðÄÇÊÇʲôÁË¡£µ«¿ÉÒÔÀí½â£¬»úÆ÷ºÜÄѽ¨Á¢³¤ÆÚµÄ¼ÇÒäÄ£ÐÍ¡£

ÈçÉÏËùÊö£¬Òª´ï³ÉÕâ¸öÄ¿µÄµÄÒ»ÖÖ·½·¨ÊÇʹÓÃTransformers£¬µ«ËüÃÇÊÇÔڹ̶¨³¤¶ÈµÄÉÏÏÂÎÄÖÐʵÏֵġ£»»¾ä»°Ëµ£¬Èç¹ûʹÓÃÕâÖÖ·½·¨£¬¾ÍûÓÐÌ«´óµÄÁé»îÐÔ¡£

Transformer-XLºÜºÃµØÃÖ²¹ÁËÕâ¸ö²î¾à¡£ËüÓÉGoogle AIÍŶӿª·¢£¬ÊÇÒ»ÖÖÐÂÓ±µÄNLP¼Ü¹¹£¬Äܹ»°ïÖú»úÆ÷Àí½â³¬³ö¹Ì¶¨³¤¶ÈÏÞÖÆµÄÉÏÏÂÎÄ¡£Transformer-XLµÄÍÆÀíËٶȱȴ«Í³µÄTransformer¿ì1800±¶¡£

ͨ¹ýä¯ÀÀÏÂÃæ¹È¸è·¢²¼µÄÁ½¸ögifÎļþ£¬Äã¾Í»áÃ÷°×ÕâÆäÖеÄÇø±ð:

ÕýÈçÄãÏÖÔÚ¿ÉÄÜÒѾ­Ô¤²âµ½µÄ£¬Transformer-XLÔÚ¸÷ÖÖÓïÑÔ½¨Ä£»ù×¼/Êý¾Ý¼¯ÉÏÈ¡µÃÁË×îеļ¼Êõ³É¹û¡£ÒÔÏÂÊÇËûÃÇÒ³ÃæÉϵÄÒ»¸öС±í¸ñ£¬ËµÃ÷ÁËÕâÒ»µã:

֮ǰ¸ø¹ýÁ´½Ó²¢½«ÔÚÏÂÃæÌáµ½µÄTransformer-XL GitHub´æ´¢¿â°üº¬ÁËPyTorchºÍTensorFlowÖеĴúÂë¡£

ѧϰºÍÔĶÁ¸ü¶àTransformer-XLÓйØÐÅÏ¢µÄ×ÊÔ´£º

¹È¸èµÄ¹Ù·½²©¿ÍÎÄÕÂ

https://ai.googleblog.com/2019/01/transformer-xl-unleashing-potential-of.html

Transformer-XLµÄԤѵÁ·Ä£ÐÍ

https://www.paperswithcode.com/paper/transformer-xl-attentive-language-models

Ñо¿ÂÛÎÄ

https://arxiv.org/abs/1901.02860

GPT-2Ä£ÐÍ£¨OpenAI£©

ÕâÊÇÒ»¸öÊ®·ÖÓÐÕùÒéµÄÄ£ÐÍ£¬Ò»Ð©ÈË»áÈÏΪGPT-2µÄ·¢²¼ÊÇOpenAIµÄÓªÏúàåÍ·¡£ÎÒ¿ÉÒÔÀí½âËûÃǵÄÏë·¨£¬µ«ÊÇÎÒÈÏΪÖÁÉÙÓ¦¸ÃÒªÏȶÔOpenAI·¢²¼µÄ´úÂë½øÐг¢ÊÔ¡£

Ê×ÏÈ£¬ÎªÄÇЩ²»ÖªµÀÎÒÔÚ˵ʲôµÄÈËÌṩһЩ±³¾°ÐÅÏ¢¡£OpenAIÔÚ2Ô·ݷ¢±íÁËһƪ²©¿ÍÎÄÕ£¬ËûÃÇÉù³ÆÒѾ­Éè¼ÆÁËÒ»¸öÃûΪGPT-2µÄNLPÄ£ÐÍ£¬Õâ¸öÄ£Ðͷdz£ºÃ£¬ÒÔÖÁÓÚµ£Ðı»¶ñÒâʹÓöøÎÞ·¨·¢²¼ÍêÕûµÄ°æ±¾£¬Õ⵱ȻÒýÆðÁËÉç»áµÄ¹Ø×¢¡£

GPT-2¾­¹ýѵÁ·£¬¿ÉÒÔÓÃÀ´Ô¤²â40GBµÄ»¥ÁªÍøÎı¾Êý¾ÝÖеÄÏÂÒ»¸ö³öÏֵĴʡ£ ¸Ã¿ò¼ÜÒ²ÊÇÒ»¸ö»ùÓÚtransformerµÄÄ£ÐÍ£¬¶øÕâ¸öÄ£ÐÍÊÇ»ùÓÚ800Íò¸öwebÒ³ÃæµÄÊý¾Ý¼¯À´½øÐÐѵÁ·¡£ËûÃÇÔÚÍøÕ¾ÉÏ·¢²¼µÄ½á¹û¼òÖ±ÁîÈËÕ𾪣¬ÒòΪ¸ÃÄ£ÐÍÄܹ»¸ù¾ÝÎÒÃÇÊäÈëµÄ¼¸¸ö¾ä×Ó±àд³öÒ»¸öÍêÕûµÄ¹ÊÊ¡£¿´¿´Õâ¸öÀý×Ó£º

ÄÑÒÔÖÃÐÅ£¬Êǰɣ¿

¿ª·¢ÈËÔ±ÒѾ­·¢²¼ÁËÒ»¸ö¸üС°æ±¾µÄGPT-2£¬¹©Ñо¿ÈËÔ±ºÍ¹¤³Ìʦ²âÊÔ¡£Ô­Ê¼Ä£ÐÍÓÐ15ÒÚ¸ö²ÎÊý¡ª¡ª¿ª·ÅÔ´ÂëʾÀýÄ£ÐÍÓÐ1.17ÒÚ¸ö²ÎÊý¡£

ѧϰºÍÔĶÁ¸ü¶àGPT-2ÓйØÐÅÏ¢µÄ×ÊÔ´£º

OpenAIµÄ¹Ù·½²©¿ÍÎÄÕÂ

https://openai.com/blog/better-language-models/

GPT-2µÄԤѵÁ·Ä£ÐÍ

https://github.com/openai/gpt-2

Ñо¿ÂÛÎÄ

https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf

´ÊǶÈ루word embedding£©Ä£ÐÍ

ÎÒÃÇʹÓõĴó¶àÊý»úÆ÷ѧϰºÍÉî¶ÈѧϰËã·¨¶¼ÎÞ·¨Ö±½Ó´¦Àí×Ö·û´®ºÍ´¿Îı¾¡£ÕâЩ¼¼ÊõÒªÇóÎÒÃǽ«Îı¾Êý¾Ýת»»ÎªÊý×Ö£¬È»ºó²ÅÄÜÖ´ÐÐÈÎÎñ£¨ÀýÈç»Ø¹é»ò·ÖÀࣩ¡£

Òò´Ë¼òµ¥À´Ëµ£¬ ´ÊǶÈ루word embedding£©ÊÇÎı¾¿é£¬ÕâЩÎı¾¿é±»×ª»»³ÉÊý×ÖÒÔÓÃÓÚÖ´ÐÐNLPÈÎÎñ¡£´ÊǶÈ루word embedding£©¸ñʽͨ³£³¢ÊÔʹÓÃ×ֵ佫µ¥´ÊÓ³Éäµ½ÏòÁ¿¡£

Äã¿ÉÒÔÔÚÏÂÃæµÄÎÄÕÂÖиüÉîÈëµØÁ˽âword embedding¡¢ËüµÄ²»Í¬ÀàÐÍÒÔ¼°ÈçºÎÔÚÊý¾Ý¼¯ÖÐʹÓÃËüÃÇ¡£Èç¹ûÄã²»ÊìϤÕâ¸ö¸ÅÄÎÒÈÏΪ±¾Ö¸ÄϱضÁ£º

¶Ô´ÊǶÈëµÄÖ±¹ÛÀí½â£º´Ó¼ÆËãÏòÁ¿µ½Word2Vec

https://www.analyticsvidhya.com/blog/2019/03/pretrained-models-get-started-nlp/

ÔÚ±¾½ÚÖУ¬ÎÒÃǽ«½éÉÜNLPµÄÁ½¸ö×îÏȽøµÄ´ÊǶÈ루word embedding£©¡£ÎÒ»¹ÌṩÁ˽̳ÌÁ´½Ó£¬ÒÔ±ãÄã¿ÉÒÔ¶Ôÿ¸öÖ÷ÌâÓÐʵ¼ÊµÄÁ˽⡣

ELMoÄ£ÐÍ

Õâ¸öELMo²¢²»ÊÇ¡¶Ö¥Âé½Ö¡·ÀïµÄÄǸö½ÇÉ«£¬µ«ÊÇÕâ¸öELMo£¨Embeddings from Language Models£¨ÓïÑÔÄ£ÐÍǶÈ룩µÄËõд£©ÔÚ¹¹½¨NLPÄ£Ð͵ÄÉÏÏÂÎÄÖзdz£ÓÐÓá£

ELMoÊÇÒ»ÖÖÓÃÏòÁ¿ºÍǶÈë±íʾµ¥´ÊµÄз½·¨¡£ÕâЩELMo ´ÊǶÈ루word embedding£©°ïÖúÎÒÃÇÔÚ¶à¸öNLPÈÎÎñÉÏʵÏÖ×îÏȽøµÄ½á¹û£¬ÈçÏÂͼËùʾ:

ÈÃÎÒÃÇ»¨µãʱ¼äÀ´Á˽âÒ»ÏÂELMoÊÇÈçºÎ¹¤×÷µÄ¡£»ØÏëÒ»ÏÂÎÒÃÇ֮ǰÌÖÂÛ¹ýµÄË«ÏòÓïÑÔÄ£ÐÍ¡£´ÓÕâÆªÎÄÕÂÖÐÎÒÃÇÄܹ»µÃµ½Ìáʾ£¬¡°ELMoµ¥´ÊÏòÁ¿ÊÇÔÚË«²ãË«ÏòÓïÑÔÄ£ÐÍ£¨biLM£©µÄ»ù´¡ÉϽøÐмÆËãµÄ¡£Õâ¸öbiLMÄ£ÐÍÓÐÁ½²ãµþ¼ÓÔÚÒ»Æð£¬Ã¿Ò»²ã¶¼ÓÐ2¸öͨµÀ¡ª¡ªÇ°ÏòͨµÀºÍºóÏòͨµÀ£º

ELMoµ¥´Ê±íʾ¿¼ÂǼÆËã´ÊǶÈ루word embedding£©µÄÍêÕûÊäÈëÓï¾ä¡£Òò´Ë£¬¡°read¡±Õâµ¥´ÊÔÚ²»Í¬µÄÉÏÏÂÎÄÖоßÓв»Í¬µÄELMoÏòÁ¿¡£ÕâÓë¾É°æµÄ´ÊǶÈ루word embedding£©´ó²»Ïàͬ£¬¾É°æÖÐÎÞÂÛÔÚʲôÑùµÄÉÏÏÂÎÄÖÐʹÓõ¥´Ê¡°read¡±£¬·ÖÅ䏸¸Ãµ¥´ÊµÄÏòÁ¿ÊÇÏàͬµÄ¡£

ѧϰºÍÔĶÁ¸ü¶àELMoÓйØÐÅÏ¢µÄ×ÊÔ´£º

Ñ­Ðò½¥½øµÄNLPÖ¸ÄÏ£¬Á˽âELMo´ÓÎı¾ÖÐÌáÈ¡ÌØÕ÷

https://www.analyticsvidhya.com/blog/2019/03/learn-to-use-elmo-to-extract-features-from-text/?utm_source=blog&utm_medium=top-pretrained-models-nlp-article

ԤѵÁ·Ä£Ð͵ÄGitHub´æ´¢¿â

https://github.com/allenai/allennlp/blob/master/tutorials/how_to/elmo.md

Ñо¿ÂÛÎÄ

https://arxiv.org/pdf/1802.05365.pdf

FlairÄ£ÐÍ

Flair²»ÊÇÒ»¸ö´ÊǶÈ루word embedding£©£¬¶øÊÇËüµÄ×éºÏ¡£ÎÒÃÇ¿ÉÒÔ½«Flair³ÆÎª½áºÏÁËGloVe¡¢BERTÓëELMoµÈǶÈ뷽ʽµÄNLP¿â¡£Zalando ResearchµÄÓÅÐãÔ±¹¤ÒѾ­¿ª·¢ÁË¿ªÔ´µÄFlair¡£

¸ÃÍŶÓÒѾ­ÎªÒÔÏÂNLPÈÎÎñ·¢²¼Á˼¸¸öԤѵÁ·Ä£ÐÍ£º

Ãû³Æ - ʵÌåʶ±ð£¨NER£©

´ÊÐÔ±ê×¢£¨PoS£©

Îı¾·ÖÀà

Åàѵ¶¨ÖÆÄ£ÐÍ

²»ÏàÐÅÂð£¿ÄÇô£¬Õâ¸ö¶ÔÕÕ±í»á°ïÄãÕÒµ½´ð°¸:

¡°Flair Embedding¡±ÊÇFlair¿âÖдò°üµÄÇ©ÃûǶÈ룬ËüÓÉÉÏÏÂÎÄ×Ö·û´®Ç¶ÈëÌṩ֧³Ö¡£Á˽âÖ§³ÖFlairµÄºËÐÄ×é¼þ¿ÉÒÔÔĶÁÕâÆªÎÄÕ£º

https://www.analyticsvidhya.com/blog/2019/02/flair-nlp-library-python/?utm_source=blog&utm_medium=top-pretrained-models-nlp-article

ÎÒÌØ±ðϲ»¶FlairµÄµØ·½ÊÇËüÖ§³Ö¶àÖÖÓïÑÔ£¬¶øÕâô¶àµÄNLP·¢Ðаæ´ó¶à¶¼Ö»ÓÐÓ¢Îİ汾¡£Èç¹ûNLPÒªÔÚÈ«Çò»ñµÃÎüÒýÁ¦£¬ÎÒÃÇÐèÒªÔÚ´Ë»ù´¡ÉϽøÐÐÀ©Õ¹¡£

ѧϰºÍÔĶÁ¸ü¶àÓйØFlairµÄ×ÊÔ´£º

Flair for NLP¼ò½é£ºÒ»¸ö¼òµ¥µ«¹¦ÄÜÇ¿´óµÄ×îÏȽøµÄNLP¿â

https://www.analyticsvidhya.com/blog/2019/02/flair-nlp-library-python/?utm_source=blog&utm_medium=top-pretrained-models-nlp-article

FlairµÄԤѵÁ·Ä£ÐÍ

https://github.com/zalandoresearch/flair

ÆäËûԤѵÁ·Ä£ÐÍ

StanfordNLP £¨Ë¹Ì¹¸££©

Ìáµ½À©Õ¹NLPʹÆä²»¾ÖÏÞÓÚÓ¢ÓÕâÀïÓÐÒ»¸öÒѾ­ÊµÏÖ¸ÃÄ¿µÄµÄ¿â¡ª¡ªStanfordNLP¡£Æä×÷ÕßÉù³ÆStanfordNLPÖ§³Ö³¬¹ý53ÖÖÓïÑÔ£¬Õ⵱ȻÒýÆðÁËÎÒÃǵÄ×¢Òâ¡£

ÎÒÃǵÄÍŶÓÊǵÚÒ»ÅúʹÓøÿⲢÔÚÕæÊµÊý¾Ý¼¯ÉÏ·¢²¼½á¹ûµÄÍŶÓÖ®Ò»¡£ÎÒÃÇͨ¹ý³¢ÊÔ£¬·¢ÏÖStanfordNLPȷʵΪÔÚ·ÇÓ¢ÓïÓïÑÔÉÏÓ¦ÓÃNLP¼¼ÊõÌṩÁ˺ܶà¿ÉÄÜÐÔ£¬±ÈÈçÓ¡µØÓï¡¢ººÓïºÍÈÕÓï¡£

StanfordNLPÊÇһϵÁо­¹ýÔ¤ÏÈѵÁ·µÄ×îÏȽøµÄNLPÄ£Ð͵ļ¯ºÏ¡£ÕâЩģÐͲ»½öÊÇÔÚʵÑéÊÒÀï½øÐвâÊÔ¡ª¡ª×÷ÕßÔÚ2017ÄêºÍ2018ÄêµÄCoNLL¾ºÈüÖж¼Ê¹ÓÃÁËÕâЩģÐÍ¡£ÔÚStanfordNLPÖдò°üµÄËùÓÐԤѵÁ·NLPÄ£ÐͶ¼ÊÇ»ùÓÚPyTorch¹¹½¨µÄ£¬¿ÉÒÔÔÚÄã×Ô¼ºµÄ×¢ÊÍÊý¾ÝÉϽøÐÐѵÁ·ºÍÆÀ¹À¡£

ÎÒÃÇÈÏΪÄãÓ¦¸Ã¿¼ÂÇʹÓÃStanfordNLPµÄÁ½¸öÖ÷ÒªÔ­ÒòÊÇ£º

ÓÃÓÚÖ´ÐÐÎı¾·ÖÎöµÄÍêÕûÉñ¾­ÍøÂç¹ÜµÀ£¬°üÀ¨¡£

±ê¼Ç»¯

¶à×ÖÁîÅÆ£¨MWT£©ÍØÕ¹

´ÊÐλ¹Ô­

´ÊÐÔ£¨POS£©ºÍ´ÊÐÎÌØÕ÷±ê¼Ç

ÒÀ´æÓï·¨·ÖÎö

Îȶ¨µÄStanford CoreNLPÈí¼þµÄ¹Ù·½Python½Ó¿Ú¡£

ѧϰºÍÔĶÁ¸ü¶àStanfordNLPÓйØÐÅÏ¢µÄ×ÊÔ´£º

StanfordNLP¼ò½é£ºÒ»¸ö²»¿É˼ÒéµÄÖ§³Ö53ÖÖÓïÑÔµÄ×îÏȽøNLP¿â £¨Ê¹ÓÃPython´úÂ룩

https://www.analyticsvidhya.com/blog/2019/02/stanfordnlp-nlp-library-python/?utm_source=blog&utm_medium=top-pretrained-models-nlp-article

StanfordNLPµÄԤѵÁ·Ä£ÐÍ

https://github.com/stanfordnlp/stanfordnlp

βע

Õâ¾ø²»ÊÇÒ»¸öԤѵÁ·NLPÄ£Ð͵ÄÏ꾡ÁÐ±í£¬Óиü¶àÄÜÓõĿÉÒÔÔÚÕâ¸öÍøÕ¾ÉÏÕÒµ½£ºhttps://paperswithcode.com

ÒÔÏÂÊÇѧϰNLPµÄһЩÓÐÓÃ×ÊÔ´£º

ʹÓÃPython¿Î³Ì½øÐÐ×ÔÈ»ÓïÑÔ´¦Àíhttps://courses.analyticsvidhya.com/courses/natural-language-processing-nlp?utm_source=blog&utm_medium=top-pretrained-models-nlp-article

ÈÏÖ¤ÏîÄ¿£ºNLP³õѧÕßhttps://courses.analyticsvidhya.com/bundles/nlp-combo?utm_source=blog&utm_medium=top-pretrained-models-nlp-article

×ÔÈ»ÓïÑÔ´¦Àí£¨NLP£©ÏµÁÐÎÄÕÂhttps://www.analyticsvidhya.com/blog/category/nlp/?utm_source=blog&utm_medium=top-pretrained-models-nlp-article

ÎÒºÜÏëÌýÌýÄã¶ÔÕâ·ÝÇåµ¥µÄ¿´·¨¡£ÄãÒÔǰÓùýÕâЩԤѵÁ·¹ýµÄÄ£ÐÍÂ𣿻òÕßÄãÒѾ­Ì½Ë÷¹ýÆäËûµÄÄ£ÐÍ£¿ÇëÔÚÏÂÃæµÄÆÀÂÛÇø¸æËßÎÒ¡ª¡ªÎÒºÜÀÖÒâËÑË÷ËüÃDz¢Ìí¼Óµ½Õâ¸öÁбíÖС£

ÉùÃ÷£º±¾ÎÄÄÚÈݼ°ÅäͼÓÉÈëפ×÷Õß׫д»òÕßÈëפºÏ×÷ÍøÕ¾ÊÚÈ¨×ªÔØ¡£ÎÄÕ¹۵ã½ö´ú±í×÷Õß±¾ÈË£¬²»´ú±íµç×Ó·¢ÉÕÓÑÍøÁ¢³¡¡£ÎÄÕ¼°ÆäÅäͼ½ö¹©¹¤³Ìʦѧϰ֮Óã¬ÈçÓÐÄÚÈÝÇÖȨ»òÕ߯äËûÎ¥¹æÎÊÌ⣬ÇëÁªÏµ±¾Õ¾´¦Àí¡£ ¾Ù±¨Í¶Ëß
  • Êý¾Ý¼¯
    +¹Ø×¢

    ¹Ø×¢

    4

    ÎÄÕÂ

    1224

    ä¯ÀÀÁ¿

    25541
  • ×ÔÈ»ÓïÑÔ´¦Àí

    ¹Ø×¢

    1

    ÎÄÕÂ

    628

    ä¯ÀÀÁ¿

    14198
  • nlp
    nlp
    +¹Ø×¢

    ¹Ø×¢

    1

    ÎÄÕÂ

    490

    ä¯ÀÀÁ¿

    22660

Ô­ÎıêÌ⣺8ÖÖÓÅÐãԤѵÁ·Ä£ÐÍ´óÅ̵㣬NLPÓ¦ÓÃso easy£¡

ÎÄÕ³ö´¦£º¡¾Î¢ÐźţºBigDataDigest£¬Î¢ÐŹ«Öںţº´óÊý¾ÝÎÄÕª¡¿»¶Ó­Ìí¼Ó¹Ø×¢£¡ÎÄÕÂ×ªÔØÇë×¢Ã÷³ö´¦¡£

ÊÕ²Ø ÈËÊÕ²Ø
¼ÓÈë½»Á÷Ⱥ
΢ÐÅСÖúÊÖ¶þάÂë

ɨÂëÌí¼ÓСÖúÊÖ

¼ÓÈ빤³Ìʦ½»Á÷Ⱥ

    ÆÀÂÛ

    Ïà¹ØÍÆ¼ö
    ÈȵãÍÆ¼ö

    ÇëÎÊÈçºÎÔÚimx8mplusÉϲ¿ÊðºÍÔËÐÐYOLOv5ѵÁ·µÄÄ£ÐÍ£¿

    ÎÒÕýÔÚ´ÓÊ imx8mplus yocto ÏîÄ¿¡£ÎÒÒѾ­ÔÚ×Ô¶¨ÒåÊý¾Ý¼¯É쵀 YOLOv5 ÉÏѵÁ·Á˶ÔÏó¼ì²âÄ£ÐÍ¡£ËüÔÚ ubuntu µçÄÔÉÏÔËÐÐÁ¼ºÃ¡£ÏÖÔÚÎÒÏëÔÚÎÒµÄ imx8mplus
    ·¢±íÓÚ 03-25 07:23

    ÓÃPaddleNLPΪGPT-2Ä£ÐÍÖÆ×÷FineWeb¶þ½øÖÆÔ¤ÑµÁ·Êý¾Ý¼¯

    ×÷ÕߣºËãÁ¦Ä§·½´´Ê¼ÈË/Ó¢ÌØ¶û´´Ð´óʹÁõÁ¦ ¡¶ÓÃPaddleNLPÔÚ4060µ¥¿¨ÉÏʵ¼ù´óÄ£ÐÍԤѵÁ·¼¼Êõ¡··¢²¼ºóÊÕµ½¶ÁÕßÈÈÁÒ·´Ï죬ºÜ¶à¶ÁÕßÒªÇó½øÒ»²½½²½â¸ü¶àµÄ¼¼Êõϸ½Ú¡£±¾ÎÄÖ÷ÒªÕë¶Ô´óÓïÑÔÄ£ÐÍ
    µÄÍ·Ïñ ·¢±íÓÚ 03-21 18:24 ?1755´ÎÔĶÁ
    ÓÃPaddleNLPΪGPT-2<b class='flag-5'>Ä£ÐÍ</b>ÖÆ×÷FineWeb¶þ½øÖÆ<b class='flag-5'>Ô¤</b><b class='flag-5'>ѵÁ·</b>Êý¾Ý¼¯

    ѵÁ·ºÃµÄaiÄ£Ð͵¼Èëcubemx²»³É¹¦Ôõô´¦Àí£¿

    ѵÁ·ºÃµÄaiÄ£Ð͵¼Èëcubemx²»³É¹¦Õ¦°ì£¬ÊÔÁ˺ü¸¸öÄ£ÐÍѹËõÁËÒ²²»ÐУ¬ramÕ¼Óùý´ó£¬ÓÐÎÞ½â¾ö·½°¸£¿
    ·¢±íÓÚ 03-11 07:18

    ÊÇ·ñ¿ÉÒÔÊäÈëËæ»úÊý¾Ý¼¯À´Éú³ÉINT8ѵÁ·ºóÁ¿»¯Ä£ÐÍ£¿

    ÎÞ·¨È·¶¨ÊÇ·ñ¿ÉÒÔÊäÈëËæ»úÊý¾Ý¼¯À´Éú³É INT8 ѵÁ·ºóÁ¿»¯Ä£ÐÍ¡£
    ·¢±íÓÚ 03-06 06:45

    ´ÓOpen Model ZooÏÂÔØµÄFastSeg´óÐ͹«¹²Ô¤ÑµÁ·Ä£ÐÍ£¬ÎÞ·¨µ¼ÈëÃû³ÆÊÇÔõô»ØÊ£¿

    ´Ó Open Model Zoo ÏÂÔØµÄ FastSeg ´óÐ͹«¹²Ô¤ÑµÁ·Ä£ÐÍ¡£ ÔËÐÐ converter.py ÒÔ½« FastSeg ´óÐÍÄ£ÐÍת»»ÎªÖмä±íʾ £¨IR£©£º pyth
    ·¢±íÓÚ 03-05 07:22

    ÓÃPaddleNLPÔÚ4060µ¥¿¨ÉÏʵ¼ù´óÄ£ÐÍԤѵÁ·¼¼Êõ

    ×÷ÕߣºËãÁ¦Ä§·½´´Ê¼ÈË/Ó¢ÌØ¶û´´Ð´óʹÁõÁ¦ ֮ǰÎÒÃÇ·ÖÏíÁË¡¶´ÓÁ㿪ʼѵÁ·Ò»¸ö´óÓïÑÔÄ£ÐÍÐèҪͶ×ʶàÉÙÇ®¡·£¬ÆäÖи߰ºµÄԤѵÁ··ÑÓÃÈÃÐí¶à¶Ô´óÄ£ÐÍ
    µÄÍ·Ïñ ·¢±íÓÚ 02-19 16:10 ?1090´ÎÔĶÁ
    ÓÃPaddleNLPÔÚ4060µ¥¿¨ÉÏʵ¼ù´ó<b class='flag-5'>Ä£ÐÍ</b><b class='flag-5'>Ô¤</b><b class='flag-5'>ѵÁ·</b>¼¼Êõ

    ¡¾¡¸»ùÓÚ´óÄ£Ð͵ÄRAGÓ¦Óÿª·¢ÓëÓÅ»¯¡¹ÔĶÁÌåÑé¡¿+´óÄ£ÐÍ΢µ÷¼¼Êõ½â¶Á

    ½ñÌìѧϰ<»ùÓÚ´óÄ£Ð͵ÄRAGÓ¦Óÿª·¢ÓëÓÅ»¯>Õâ±¾Êé¡£´óÄ£ÐÍ΢µ÷ÊÇÉî¶ÈѧϰÁìÓòÖеÄÒ»Ïî¹Ø¼ü¼¼Êõ£¬ËüÖ¸µÄÊÇÔÚÒѾ­Ô¤ÑµÁ·ºÃµÄ´óÐÍÉî¶ÈѧϰģÐÍ
    ·¢±íÓÚ 01-14 16:51

    KerasHubͳһ¡¢È«ÃæµÄԤѵÁ·Ä£ÐÍ¿â

    Éî¶ÈѧϰÁìÓòÕýÔÚѸËÙ·¢Õ¹£¬ÔÚ´¦Àí¸÷ÖÖÀàÐ͵ÄÈÎÎñÖУ¬Ô¤ÑµÁ·Ä£ÐͱäµÃÔ½À´Ô½ÖØÒª¡£Keras ÒÔÆäÓû§ÓѺÃÐÍ API ºÍ¶ÔÒ×ÓÃÐÔµÄÖØÊÓ¶øÎÅÃû£¬Ê¼ÖÕ´¦ÓÚÕâÒ»¶¯ÏòµÄÇ°ÑØ¡£Keras ÓµÓÐרÓõÄÄÚÈݿ⣬ÈçÓÃ
    µÄÍ·Ïñ ·¢±íÓÚ 12-20 10:32 ?533´ÎÔĶÁ

    GPUÊÇÈçºÎѵÁ·AI´óÄ£Ð͵Ä

    ÔÚAIÄ£Ð͵ÄѵÁ·¹ý³ÌÖУ¬´óÁ¿µÄ¼ÆË㹤×÷¼¯ÖÐÔÚ¾ØÕó³Ë·¨¡¢ÏòÁ¿¼Ó·¨ºÍ¼¤»îº¯ÊýµÈÔËËãÉÏ¡£ÕâЩÔËËãÕýÊÇGPUËùÉó¤µÄ¡£½ÓÏÂÀ´£¬AI²¿ÂäС±à´øÄúÁ˽âGPUÊÇÈçºÎѵÁ·AI´óÄ£Ð͵ġ£
    µÄÍ·Ïñ ·¢±íÓÚ 12-19 17:54 ?793´ÎÔĶÁ

    ÈçºÎʹÓÃFP8м¼Êõ¼ÓËÙ´óÄ£ÐÍѵÁ·

    ÀûÓà FP8 ¼¼Êõ¼ÓËÙ LLM ÍÆÀíºÍѵÁ·Ô½À´Ô½Êܵ½¹Ø×¢£¬±¾ÎÄÖ÷ÒªºÍ´ó¼Ò½éÉÜÈçºÎʹÓà FP8 ÕâÏîм¼Êõ¼ÓËÙ´óÄ£Ð͵ÄѵÁ·¡£ ʹÓà FP
    µÄÍ·Ïñ ·¢±íÓÚ 12-09 11:30 ?1143´ÎÔĶÁ

    ʲôÊÇ´óÄ£ÐÍ¡¢´óÄ£ÐÍÊÇÔõôѵÁ·³öÀ´µÄ¼°´óÄ£ÐÍ×÷ÓÃ

    £¬»ù´¡Ä£ÐÍ¡£ ? ´óÄ£ÐÍÊÇÒ»¸ö¼ò³Æ£¬ÍêÕûµÄ½Ð·¨£¬Ó¦¸ÃÊÇ¡°È˹¤ÖÇÄÜԤѵÁ·´óÄ£ÐÍ¡±¡£Ô¤
    µÄÍ·Ïñ ·¢±íÓÚ 11-25 09:29 ?1.3w´ÎÔĶÁ
    ʲôÊÇ´ó<b class='flag-5'>Ä£ÐÍ</b>¡¢´ó<b class='flag-5'>Ä£ÐÍ</b>ÊÇÔõô<b class='flag-5'>ѵÁ·</b>³öÀ´µÄ¼°´ó<b class='flag-5'>Ä£ÐÍ</b>×÷ÓÃ

    ÈçºÎѵÁ·×Ô¼ºµÄLLMÄ£ÐÍ

    ѵÁ·×Ô¼ºµÄ´óÐÍÓïÑÔÄ£ÐÍ£¨LLM£©ÊÇÒ»¸ö¸´ÔÓÇÒ×ÊÔ´Ãܼ¯µÄ¹ý³Ì£¬Éæ¼°µ½´óÁ¿µÄÊý¾Ý¡¢¼ÆËã×ÊÔ´ºÍרҵ֪ʶ¡£ÒÔÏÂÊÇѵÁ·LLMÄ£Ð͵ÄÒ»°ã²½Ö裬ÒÔ¼°Ò»Ð©¹Ø¼ü¿¼ÂÇÒòËØ£º ¶¨ÒåÄ¿±êºÍÐèÇó £º È·¶¨ÄãµÄL
    µÄÍ·Ïñ ·¢±íÓÚ 11-08 09:30 ?1593´ÎÔĶÁ

    ÈçºÎѵÁ·×Ô¼ºµÄAI´óÄ£ÐÍ

    ѵÁ·×Ô¼ºµÄAI´óÄ£ÐÍÊÇÒ»¸ö¸´ÔÓÇÒºÄʱµÄ¹ý³Ì£¬Éæ¼°¶à¸ö¹Ø¼ü²½Öè¡£ÒÔÏÂÊÇÒ»¸öÏêϸµÄѵÁ·Á÷³Ì£º Ò»¡¢Ã÷È·ÐèÇóºÍÄ¿±ê Ê×ÏÈ£¬ÐèÒªÃ÷È·×Ô¼ºµÄÐèÇóºÍÄ¿±ê¡£²»Í¬µÄÈÎÎñºÍÓ¦ÓÃÁìÓòÐèÒª²»Í¬ÀàÐ͵ÄAIÄ£ÐÍ
    µÄÍ·Ïñ ·¢±íÓÚ 10-23 15:07 ?5161´ÎÔĶÁ

    Ö±²¥Ô¤Ô¼ |Êý¾ÝÖÇÄÜϵÁн²×ùµÚ4ÆÚ£ºÔ¤ÑµÁ·µÄ»ù´¡Ä£ÐÍϵijÖÐøÑ§Ï°

    ðØµºÂÛ̳Êý¾ÝÖÇÄÜϵÁн²×ùµÚ4ÆÚ¡¸Ô¤ÑµÁ·µÄ»ù´¡Ä£ÐÍϵijÖÐøÑ§Ï°¡¹10ÔÂ30ÈÕ£¨ÖÜÈý£©20£º00¾«²Ê¿ª²¥ÆÚ´ýÓëÄúÔÆÏà¾Û£¬¹²ÏåѧÊõÊ¢Ñ磡|Ö±²¥ÐÅÏ¢±¨¸æÌâĿԤ
    µÄÍ·Ïñ ·¢±íÓÚ 10-18 08:09 ?664´ÎÔĶÁ
    Ö±²¥Ô¤Ô¼ |Êý¾ÝÖÇÄÜϵÁн²×ùµÚ4ÆÚ£º<b class='flag-5'>Ô¤</b><b class='flag-5'>ѵÁ·</b>µÄ»ù´¡<b class='flag-5'>Ä£ÐÍ</b>ϵijÖÐøÑ§Ï°

    FP8Ä£ÐÍѵÁ·ÖÐDebugÓÅ»¯Ë¼Â·

    Ŀǰ£¬Êг¡ÉÏÐí¶à¹«Ë¾¶¼»ý¼«¿ªÕ¹»ùÓÚ FP8 µÄ´óÄ£ÐÍѵÁ·£¬ÒÔÌá¸ß¼ÆËãЧÂʺÍÐÔÄÜ¡£ÔÚ´Ë£¬ÎÒÃÇÕûÀí²¢×ܽáÁ˿ͻ§¼° NVIDIA ¼¼ÊõÍŶÓÔÚ FP8 Ä£ÐÍ
    µÄÍ·Ïñ ·¢±íÓÚ 09-06 14:36 ?995´ÎÔĶÁ
    FP<b class='flag-5'>8</b><b class='flag-5'>Ä£ÐÍ</b><b class='flag-5'>ѵÁ·</b>ÖÐDebugÓÅ»¯Ë¼Â·