0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

如何选择合适的深度学习框架开展AI研究

NVIDIA英伟达 ? 来源:cc ? 2019-02-12 10:09 ? 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

深度学习框架正如一家杂货店,当人们想要做一顿美餐的时候,想必没有几个人会亲自到菜园里种菜,而是选择从市场里购买食材。

正如想要炒菜的人不会亲自去种菜采摘一样,开发者们也不想每次搭建深度学习神经网络的时侯都从零开始。

由于深度学习模型规模庞大且结构复杂,在编写功能代码的时候,程序员不会每种功能代码都从头编写,而是会借助框架和软件库来高效地构建神经网络。顶级深度学习框架可提供专用于深度神经网络计算的代码,这些代码均经过高度优化,并支持GPU计算。

深度学习框架之间的差异

不同类型的杂货店通常都有其各自专营的特色商品。比如,当人们烹饪家常菜的时候,通常可以直接在当地市场买到所需的基础食材;可是当人们想要制作具有异域风情的高级菜品的时候,则可能更喜欢在大型超市里选购进口蔬菜,挑选未经人工催熟的有机水果;又或者,当您要为一大桌子人准备饭菜,您又有可能会选择在批发市场里采购一番。

同样道理,虽然开发者可以基于任意一种深度学习框架构建出绝大多数类型的网络(例如卷积神经网络或递归神经网络),但各个框架在可用示例的数量和更新频率方面各有差异。此外,在增添新功能方面,各个深度学习框架中贡献者的数量也彼此不同,而且框架通过API 提供功能的方式也同样各具特色。

顶级框架都是开源的,其中大部分框架的发布时间始于 2014 年,而且其开发工作一直都很活跃。

如何选择深度学习框架

在选择深度学习框架的时候,开发者们通常会有很多不同的考量,例如:框架前端与开发者专业技能的匹配程度,可获取的社区支持力度,或他们感兴趣的新功能的开发速度。

深度学习框架一般可以使用例如Python 或 C/C ++ 等编程语言中的脚本,通过命令访问接口;也可以通过类似于 NVIDIA DIGITS 的图形界面进行访问,此类界面允许开发者在更加用户友好的 Web 应用程序中构建深度神经网络。

如果您希望将您的深度学习应用程序与 NVIDIA GPU 相集成的话,请查看 NVIDIA 开发者计划以了解更多信息。

如何在深度学习框架之间迁移模型

根据其所开发应用程序的需要,开发者可能会首先使用一个框架来构建和训练深度学习模型;然后再使用不同的框架对模型进行重新训练,或者在不同的框架上部署该模型,以便进行推理。

开放式神经网络交换 (ONNX) 是一种允许开发者在框架之间迁移模型的深度学习模型格式。ONNX 支持在大多数主流框架之间进行模型迁移。当深度学习应用程序已经完成了训练并可以部署时, TensorRT 软件会对NVIDIA GPU 上的高性能推理模型进行优化。TensorRT 与 TensorFlowMATLAB 高度集成,并且支持导入 ONNX 格式的深度学习模型。

以下列举了一些热门的深度学习框架,以及多家公司和研究人员如何构建用于医疗、灾难预测和细胞生物学的GPU加速应用程序的案例。

Apache MXNet

Apache MXNet 是由 Apache Software Foundation 于 2015 年创建的深度学习框架。一家位于西雅图的初创公司——Magic AI, 正在利用深度学习模型来监控马匹的健康状况,该模型基于 MXNet 构建,并运行于 NVIDIA GPU 上。该神经网络可以逐帧分析马厩内的监控视频,当出现意外状况,例如:马匹即将分娩,马匹表现出绞痛症状或陌生人进入马厩时,该神经网络会向马场主发送警报。

开发者可以将模型迁移到 ONNX 进行推理,然后使用 NVIDIA TensorRT 进行优化和部署。

Caffe

Caffe 深度学习框架于2014 年诞生在加州大学伯克利分校,并催生了 NVCaffe 等分支以及类似于 Facebook 的 Caffe2(现与 PyTorch 合并)的新型框架。肺癌是全球最常见的癌症,半数被诊断为肺癌的患者会在一年内死亡。借助深度学习和 NVIDIA GPU,位于圣路易斯的初创公司 Innovation DX利用胸部 X 光扫描对肺癌进行早期筛查。他们的早期检测工具由神经网络和 Caffe 框架提供支持,可以使肺癌患者的存活率提高两倍。

开发者可以利用 NVIDIA TensorRT 的内置 Caffe 模型导入器,对推理模型进行优化和部署。

Chainer

Chainer 诞生于 2015 年,由日本风险投资公司Preferred Networks开发。利用这款基于 Python 的框架,Preferred Networks与工业自动化巨头 FANUC 携手合作,共同参加了 2016 年的亚马逊分拣货物挑战赛 (Amazon Picking Challenge)。挑战赛的内容是让自主机器人分拣并放置物品。Preferred Networks 和 FANUC 在比赛中使用了卷积神经网络和用于笔记本电脑的NVIDIA GeForce GTX 870M GPU,并最终取得了第二名的好成绩。

开发者可以将模型迁移到 ONNX 进行推理,然后使用 NVIDIA TensorRT 进行优化和部署。

Keras

Keras 是一个可以在多个框架上运行的界面,使用高级Python API ,它可以在诸如MXNet、TensorFlow、Theano 和 Microsoft Cognitive Toolkit等不同框架之上运行。Keras 由研究人员 Fran?oisChollet 于 2014 年创建,旨在让统一且抽象的 API 变得易于使用。一个韩国研究团队使用 Keras 来提高飓风预测的速度和准确性。他们使用 TensorFlow 上的 Keras 构建了深度学习模型,并在 NVIDIA GPU 上运行,可以提前几个小时预测风暴的路径和降水量。由于这些神经网络能够提前预测风暴,因此他们可以在飓风来袭之前向当地居民发出警告,争取更多的疏散时间。

MATLAB

MATLAB 允许熟悉其软件的工程师使用 MATLAB 代码来开发深度学习工具。借助MATLAB 和 NVIDIA GPU,阿尔伯塔大学的研究人员致力于帮助患者避免不必要的前列腺癌活检。该团队的深度学习模型对细胞外囊泡的生物标志物数据进行分析,从而预判是否存在癌细胞。

在推理方面,开发者可以通过 MATLAB GPU Coder 使用 TensorRT 自动生成经过优化的推理引擎。

Microsoft Cognitive Toolkit

这款由微软公司于2014年推出的深度学习框架,起初被命名为CNTK, 其主要为微软自己的AI模型(如 Cortana)提供支持。借助NVIDIA Tesla GPU和 Microsoft Cognitive Toolkit,医疗科技公司 IRIS 专注于预防糖尿病视网膜病变或糖尿病引起的失明,此类疾病只能通过眼科检查才能发现,患者很难自行判断。而IRIS 的神经网络可通过分析视网膜图像,告知患者是否需要到专业医师处就诊。

开发者可以将模型迁移到 ONNX 进行推理,然后使用 NVIDIA TensorRT 进行优化和部署。

PyTorch

PyTorch 的前身是 Torch,一种基于编程语言 Lua 的热门深度学习框架,该框架于 2011 年推出。随后,2017 年,Facebook 推出了 PyTorch,后者继承了 Torch 的功能并可以在 Python 中实施。艾伦细胞科学研究所 (Allen Institute of Cell Science) 的研究人员利用 PyTorch 开发出了首个可预测人体活细胞的3D 模型,该模型由 NVIDIA DGX 工作站和 TITAN Xp GPU 提供支持,能够让科学家在虚拟环境中以数字方式实现细胞的可视化并操纵细胞行为。这款利用卷积神经网络构建的细胞模型可以替代昂贵的荧光显微镜观测,让科学家能够以一种前所未有的方式理解和预测细胞活动。

开发者可以将模型迁移到 ONNX 进行推理,然后使用 NVIDIA TensorRT 进行优化和部署。

TensorFlow

TensorFlow 是 Google 于 2015 年创建的深度学习框架。德克萨斯大学 MD 安德森癌症中心的研究人员正在使用 TensorFlow 开发高精度放射治疗技术。放射科医师通常会检查癌症患者的扫描图像,以判断在不损害正常组织的情况下应该使用多少辐射量来进行肿瘤靶向治疗。借助 NVIDIA Tesla GPU,研究人员开发了可学习并模仿医生工作模式的深度学习模型,来识别放射目标区域。

在推理方面,开发者既可以使用 TensorFlow-TensorRT 集成功能优化 TensorFlow 中的模型;也可以导出 TensorFlow 模型,然后使用 NVIDIA TensorRT 的内置 TensorFlow 模型导入器在 TensorRT 中进行优化。。

广泛的框架生态系统

NVIDIA与上述诸多框架以及其他框架(如百度的 PaddlePaddle)合作,使深度学习应用程序得以成功实现。

新型深度学习框架正在不断地涌现,这表明神经网络得到了开发者的广泛采用。Theano 和 Torch 这类早期框架为许多深度学习应用程序提供了支持,但其创建者在 2017 年宣布,他们将不再继续开发这些框架。

NVIDIA 的深度学习框架团队直接参与了其中的多个开源项目,仅在去年,就做出了共计 800 多项贡献,提高了这些项目的易用性和性能。

NGC 容器注册表允许访客即时访问上述多种框架,并能够按照访客的需求,为其提供最佳的 GPU 加速性能。

了解更多有关深度学习框架的资源和安装信息,请访问 NVIDIA Developer 网站。该中心还为一些最常见的深度学习框架和应用程序提供示例神经网络训练脚本,例如计算机视觉、机器翻译和对象检测。在 NVIDIA GPU Cloud 目录中还提供深度学习容器套件。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • AI
    AI
    +关注

    关注

    88

    文章

    35476

    浏览量

    281252
  • 深度学习
    +关注

    关注

    73

    文章

    5564

    浏览量

    122930

原文标题:一文教你如何选择深度学习框架开启AI研究

文章出处:【微信号:NVIDIA_China,微信公众号:NVIDIA英伟达】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    任正非说 AI已经确定是第四次工业革命 那么如何从容地加入进来呢?

    GitHub等平台上寻找感兴趣的AI开源项目。例如,可以参与一些小型的深度学习框架改进项目,或者数据标注工具的开发项目。通过参与这些项目,可以学习
    发表于 07-08 17:44

    Nordic收购 Neuton.AI 关于产品技术的分析

    Nordic Semiconductor 于 2025 年收购了 Neuton.AI,这是一家专注于超小型机器学习(TinyML)解决方案的公司。 Neuton 开发了一种独特的神经网络框架,能够
    发表于 06-28 14:18

    嵌入式AI技术之深度学习:数据样本预处理过程中使用合适的特征变换对深度学习的意义

    ? 作者:苏勇Andrew 使用神经网络实现机器学习,网络的每个层都将对输入的数据做一次抽象,多层神经网络构成深度学习框架,可以深度理解数
    的头像 发表于 04-02 18:21 ?933次阅读

    AI Agent 应用与项目实战》----- 学习如何开发视频应用

    再次感谢发烧友提供的阅读体验活动。本期跟随《AI Agent 应用与项目实战》这本书学习如何构建开发一个视频应用。AI Agent是一种智能应用,能够根据用户需求和环境变化做出相应响应。通常基于
    发表于 03-05 19:52

    AI自动化生产:深度学习在质量控制中的应用

    随着科技的飞速发展,人工智能(AI)与深度学习技术正逐步渗透到各个行业,特别是在自动化生产中,其潜力与价值愈发凸显。深度学习软件不仅使人工和
    的头像 发表于 01-17 16:35 ?747次阅读
    <b class='flag-5'>AI</b>自动化生产:<b class='flag-5'>深度</b><b class='flag-5'>学习</b>在质量控制中的应用

    AI开发框架集成介绍

    随着AI应用的广泛深入,单一框架往往难以满足多样化的需求,因此,AI开发框架的集成成为了提升开发效率、促进技术创新的关键路径。以下,是对AI
    的头像 发表于 01-07 15:58 ?589次阅读

    华为推动中国人工智能框架生态高速发展

    近日,昇思人工智能框架峰会在北京中关村国际创新中心召开,本次大会以“创新源动力,框架选择”为主题,由昇思MindSpore开源社区、中国人工智能学会及AITISA联合主办,旨在汇聚AI
    的头像 发表于 12-17 11:06 ?835次阅读

    AI大模型与深度学习的关系

    AI大模型与深度学习之间存在着密不可分的关系,它们互为促进,相辅相成。以下是对两者关系的介绍: 一、深度学习
    的头像 发表于 10-23 15:25 ?2974次阅读

    如何选择合适AI云平台

    选择合适AI云平台是企业成功实施AI战略的关键一步。通过深入分析业务需求、全面评估平台功能、审慎考察技术架构、严格确保数据安全、合理控制成本并关注服务提供商的生态系统,企业可以更加科
    的头像 发表于 10-14 10:06 ?575次阅读

    AI for Science:人工智能驱动科学创新》第二章AI for Science的技术支撑学习心得

    人工智能在科学研究中的核心技术,包括机器学习深度学习、神经网络等。这些技术构成了AI for Science的基石,使得
    发表于 10-14 09:16

    AI for Science:人工智能驱动科学创新》第一章人工智能驱动的科学创新学习心得

    人工智能:科学研究的加速器 第一章清晰地阐述了人工智能作为科学研究工具的强大功能。通过机器学习深度学习等先进技术,
    发表于 10-14 09:12

    RISC-V如何支持不同的AI和机器学习框架和库?

    RISC-V如何支持不同的AI和机器学习框架和库?还请坛友们多多指教一下。
    发表于 10-10 22:24

    如何选择合适自己的示波器?

    选择合适的示波器是确保测量准确性和效率的关键。以下是一些建议选择指南,仅供参考: 选择示波器时需要考虑的因素 带宽:示波器的带宽应至少是最大信号带宽的五倍,以达到优于±2%的测量精度
    的头像 发表于 10-10 16:16 ?867次阅读

    怎样选择合适的MOSFET

    怎样选择合适的MOSFET
    的头像 发表于 10-01 08:01 ?710次阅读
    怎样<b class='flag-5'>选择</b><b class='flag-5'>合适</b>的MOSFET

    显存技术不断升级,AI计算中如何选择合适的显存

    和推理过程至关重要。足够的显存容量能够确保显卡在执行AI任务时能够同时存储和操作所需的数据,避免因为显存不足而导致的性能瓶颈。 ? 在AI 计算中如何选择合适的显存 ? 显存对
    的头像 发表于 09-11 00:11 ?4857次阅读