0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

人工智能系统VON,生成最逼真3D图像

DPVg_AI_era ? 来源:lq ? 2018-12-07 09:28 ? 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

人工智能合成的3D物体模型不够逼真?谷歌团队最近开发了一个AI系统——视觉对象网络(VON),不仅生成的图像比当前最先进的方法还要逼真,而且还可以做一系列3D操作。

合成现实3D物体模型的人工智能,看上去并没有那么遥不可及。

在2018年蒙特利尔NeurIPS大会上,麻省理工学院计算机科学与人工智能实验室(MIT CSAIL)和谷歌的研究人员发表了一篇论文,描述了一个能够生成具有逼真纹理的人工智能系统。

论文名称:

Visual Object Networks: Image Generation with Disentangled 3D Representation

论文地址:

https://papers.nips.cc/paper/7297-visual-object-networks-image-generation-with-disentangled-3d-representations.pdf

人工智能系统VON,生成最逼真3D图像

该人工智能系统——视觉对象网络(Visual Object Networks,VON),不仅生成的图像比当前最先进的方法还要逼真,还可以进行形状和纹理编辑、视角转换以及其它3D调整。

研究人员写到:“现代深层生成模型学会了合成较为逼真的图像。大多数计算模型只专注于生成2D图像,忽略了世界是3D的本质。这种2D视角不可避免地限制了它们在许多领域的实际应用,比如合成数据生成、机器人学习、视觉现实和游戏行业。”

VON通过联合合成三维形状和二维图像来解决这个问题,研究人员将其称为“disentangled object representation”。图像生成模型被分解为形状、视点和纹理三个要素,在计算“2.5D”草图和添加纹理之前,首先学习三维形状的合成。

重要的是,因为这三个要素是条件独立的,模型不需要在二维和三维形状之间配对数据。这使得该团队能够对二维图像和三维形状的大规模集合进行训练,比如Pix3D、谷歌图像搜索和ShapeNet,后者包含了55个对象类别的数千个CAD模型。

为了让VON学习如何生成自己的形状,该团队训练了一个生成对抗网络(GAN),试图在上述三维形状数据集上区分生成样本和真实样本。纹理生成被“降级”到另一个基于GAN的神经网络

经过大约两到三天的训练,人工智能系统产生了逼真的128×128×128模型,具有真实的反射率、环境照度和反照率。

为了评估图像生成模型,团队计算了用于生成三维模型的Fréchet初始距离 。此外,他们还向亚马逊的Mechanical Turk上展示了200对由VON和最先进的模型生成的图像,被试者的任务是在每对图像中选择更加真实的结果。

VON的性能表现非常突出。与其它AI模型相比,它的Fréchet初始距离最低。Mechanical Turk被试者更喜欢VON生成的图像,比例高达74%至85%。

研究人员将专注于更加精细化的建模,以更高的分辨率生成形状和图像,将纹理分解为光照和外观,并合成自然场景。

研究团队写道:“我们的关键思想是将图像生成过程分解为三个要素:形状、视角和纹理,这种分离的3D表示方式使我们能够在对抗学习框架下从3D和2D视觉数据收集中学习模型。与现有的2D生成模型相比,我们的模型合成的图像更加逼真;它还允许3D操作,这用以前的2D方法是无法实现的。”

突飞猛进的GAN

近年来,对GAN的研究突飞猛进,尤其是在机器视觉领域:

Google旗下的DeepMind去年10月推出了一个基于GAN的系统,可以创建非常逼真的食物、风景、动物等照片;

今年9月,英伟达的研究人员开发了一种AI模型,可以对脑癌进行合成扫描;

今年8月,卡内基梅隆大学(Carnegie Mellon)的一个研究小组展示了如何利用人工智能将一个人录制下来的动作和面部表情在转移到另一张照片或视频中的目标对象;

最近,爱丁堡大学感知研究所和天文学研究所的科学家设计了一种可以产生高分辨率的星系图像。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 人工智能
    +关注

    关注

    1810

    文章

    49241

    浏览量

    251790
  • 3D图像
    +关注

    关注

    0

    文章

    38

    浏览量

    10975

原文标题:谷歌NeurIPS 2018论文:GAN生成3D模型,图像自带逼真效果

文章出处:【微信号:AI_era,微信公众号:新智元】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    挖到宝了!人工智能综合实验箱,高校新工科的宝藏神器

    和生态体系带到使用者身边 ,让我们在技术学习和使用上不再受制于人。 三、多模态实验,解锁AI全流程 它嵌入了2D视觉、深度视觉、机械手臂、语音识别、嵌入式传感器等多种类AI模块,涵盖人工智能领域主要
    发表于 08-07 14:30

    挖到宝了!比邻星人工智能综合实验箱,高校新工科的宝藏神器!

    和生态体系带到使用者身边 ,让我们在技术学习和使用上不再受制于人。 三、多模态实验,解锁AI全流程 它嵌入了2D视觉、深度视觉、机械手臂、语音识别、嵌入式传感器等多种类AI模块,涵盖人工智能领域主要
    发表于 08-07 14:23

    利用NVIDIA 3D引导生成式AI Blueprint控制图像生成

    AI 赋能的图像生成技术突飞猛进,从早期模型会生成手指过多的人类图像,到现在能创造出令人惊叹的逼真视觉效果。即使取得了如此飞跃,仍然存在一个
    的头像 发表于 06-05 09:24 ?505次阅读

    生成人工智能认证:重构AI时代的人才培养与职业跃迁路径

    ,恰似一座连接技术前沿与个体成长的桥梁,既承载着时代对人才的迫切需求,也指向着未来职场的核心竞争力。 一、技术革命的双重性:赋能与失衡并存 生成人工智能的突破性,在于其首次让机器具备了“无中生有”的创造力。从文本生成
    的头像 发表于 05-23 09:29 ?342次阅读

    NVIDIA助力影眸科技3D生成工具Rodin升级

    。在 NVIDIA Omniverse 平台、OpenUSD 以及 Isaac Lab 解决方案的助力下,影眸科技实现了 Rodin 平台的升级,显著提升了 3D 资产生成的速度、质量与用户体验,推动具身智能进一步发展。
    的头像 发表于 04-27 15:09 ?661次阅读

    一种以图像为中心的3D感知模型BIP3D

    在具身智能系统中,3D感知算法是一个关键组件,它在端侧帮助可以帮助智能体理解环境信息,在云端可以用来辅助生成
    的头像 发表于 03-17 13:44 ?577次阅读
    一种以<b class='flag-5'>图像</b>为中心的<b class='flag-5'>3D</b>感知模型BIP<b class='flag-5'>3D</b>

    我国生成人工智能的发展现状与趋势

    作为信息化、数字化、智能化的新型技术基座,生成人工智能对于提升国家战略地位与国际竞争力具有重要意义。2022年11月以来,随着以ChatGPT为代表的大语言模型迅速发展,生成
    的头像 发表于 02-08 11:31 ?1671次阅读

    腾讯混元3D AI创作引擎正式上线

    近日,腾讯公司宣布其自主研发的混元3D AI创作引擎已正式上线。这一创新性的创作工具,标志着腾讯在3D内容生成领域迈出了重要一步。 混元3D AI创作引擎的核心功能极为强大,用户只需通
    的头像 发表于 01-22 10:26 ?691次阅读

    嵌入式和人工智能究竟是什么关系?

    嵌入式和人工智能究竟是什么关系? 嵌入式系统是一种特殊的系统,它通常被嵌入到其他设备或机器中,以实现特定功能。嵌入式系统具有非常强的适应性和灵活性,能够根据用户需求进行定制化设计。它
    发表于 11-14 16:39

    《AI for Science:人工智能驱动科学创新》第6章人AI与能源科学读后感

    、优化等方面的应用有了更清晰的认识。特别是书中提到的基于大数据和机器学习的能源管理系统,通过实时监测和分析能源数据,实现了能源的高效利用和智能化管理。 其次,第6章通过多个案例展示了人工智能在能源科学中
    发表于 10-14 09:27

    《AI for Science:人工智能驱动科学创新》第一章人工智能驱动的科学创新学习心得

    ,还促进了新理论、新技术的诞生。 3. 挑战与机遇并存 尽管人工智能为科学创新带来了巨大潜力,但第一章也诚实地讨论了伴随而来的挑战。数据隐私、算法偏见、伦理道德等问题不容忽视。如何在利用AI提升科研效率
    发表于 10-14 09:12

    risc-v在人工智能图像处理应用前景分析

    人工智能推荐系统中强大的图形处理器(GPU)一争高下。其独特的设计使得该处理器在功耗受限的条件下仍能实现高性能的图像处理任务。 Ceremorphic公司 :该公司开发的分层学习处理器结合了
    发表于 09-28 11:00

    生成人工智能在教育中的应用

    生成人工智能在教育中的应用日益广泛,为教育领域带来了诸多变革和创新。以下是对生成人工智能在教育中的几个主要应用方面的详细阐述:
    的头像 发表于 09-16 16:07 ?3044次阅读

    生成人工智能的概念_生成人工智能主要应用场景

    生成人工智能(Generative Artificial Intelligence,简称GAI)是一种先进的人工智能技术,其核心在于利用计算机算法和大量数据来生成新的、具有实际价值的
    的头像 发表于 09-16 16:05 ?5213次阅读

    名单公布!【书籍评测活动NO.44】AI for Science:人工智能驱动科学创新

    大力发展AI for Science的原因。 第2章从科学研究底层的理论模式与主要困境,以及人工智能三要素(数据、算法、算力)出发,对AI for Science的技术支撑进行解读。 第3章介绍了在
    发表于 09-09 13:54