0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

深度学习在自然语言处理方面的研究进展

Dbwd_Imgtec ? 来源:互联网 ? 作者:佚名 ? 2018-07-19 09:20 ? 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

要是关注深度学习在自然语言处理方面的研究进展,我相信你一定听说过Attention Model(后文有时会简称AM模型)这个词。AM模型应该说是过去一年来NLP领域中的重要进展之一,在很多场景被证明有效。听起来AM很高大上,其实它的基本思想是相当直观简洁的。

Encoder-Decoder框架

本文只谈谈文本处理领域的AM模型,在图片处理或者(图片-图片标题)生成等任务中也有很多场景会应用AM模型,但是我们此处只谈文本领域的AM模型,其实图片领域AM的机制也是相同的。

要提文本处理领域的AM模型,就不得不先谈Encoder-Decoder框架,因为目前绝大多数文献中出现的AM模型是附着在Encoder-Decoder框架下的,当然,其实AM模型可以看作一种通用的思想,本身并不依赖于Encoder-Decoder模型,这点需要注意。

Encoder-Decoder框架可以看作是一种文本处理领域的研究模式,应用场景异常广泛,本身就值得非常细致地谈一下,但是因为本文的注意力焦点在AM模型,所以此处我们就只谈一些不得不谈的内容,详细的Encoder-Decoder模型以后考虑专文介绍。

下图是文本处理领域里常用的Encoder-Decoder框架最抽象的一种表示:

图1:抽象的Encoder-Decoder框架

Encoder-Decoder框架可以这么直观地去理解:可以把它看作适合处理由一个句子(或篇章)生成另外一个句子(或篇章)的通用处理模型。对于句子对,我们的目标是给定输入句子X,期待通过Encoder-Decoder框架来生成目标句子Y。X和Y可以是同一种语言,也可以是两种不同的语言。而X和Y分别由各自的单词序列构成:

Encoder顾名思义就是对输入句子X进行编码,将输入句子通过非线性变换转化为中间语义表示C:

对于解码器Decoder来说,其任务是根据句子X的中间语义表示C和之前已经生成的历史信息y1,y2….yi-1来生成i时刻要生成的单词yi

每个yi都依次这么产生,那么看起来就是整个系统根据输入句子X生成了目标句子Y。

Encoder-Decoder是个非常通用的计算框架,至于Encoder和Decoder具体使用什么模型都是由研究者自己定的,常见的比如CNN/RNN/BiRNN/GRU/LSTM/Deep LSTM等,这里的变化组合非常多,而很可能一种新的组合就能攒篇论文,所以有时候科研里的创新就是这么简单。比如我用CNN作为Encoder,用RNN作为Decoder,你用BiRNN做为Encoder,用深层LSTM作为Decoder,那么就是一个创新。所以正准备跳楼的憋着劲想攒论文毕业的同学可以从天台下来了,当然是走下来,不是让你跳下来,你可以好好琢磨一下这个模型,把各种排列组合都试试,只要你能提出一种新的组合并被证明有效,那恭喜你:施主,你可以毕业了。

扯远了,再拉回来。

Encoder-Decoder是个创新游戏大杀器,一方面如上所述,可以搞各种不同的模型组合,另外一方面它的应用场景多得不得了,比如对于机器翻译来说,就是对应不同语言的句子,比如X是英语句子,Y是对应的中文句子翻译。再比如对于文本摘要来说,X就是一篇文章,Y就是对应的摘要;再比如对于对话机器人来说,X就是某人的一句话,Y就是对话机器人的应答;再比如……总之,太多了。哎,那位施主,听老衲的话,赶紧从天台下来吧,无数创新在等着你发掘呢。

Attention Model

图1中展示的Encoder-Decoder模型是没有体现出“注意力模型”的,所以可以把它看作是注意力不集中的分心模型。为什么说它注意力不集中呢?请观察下目标句子Y中每个单词的生成过程如下:

其中f是decoder的非线性变换函数。从这里可以看出,在生成目标句子的单词时,不论生成哪个单词,是y1,y2也好,还是y3也好,他们使用的句子X的语义编码C都是一样的,没有任何区别。而语义编码C是由句子X的每个单词经过Encoder 编码产生的,这意味着不论是生成哪个单词,y1,y2还是y3,其实句子X中任意单词对生成某个目标单词yi来说影响力都是相同的,没有任何区别(其实如果Encoder是RNN的话,理论上越是后输入的单词影响越大,并非等权的,估计这也是为何Google提出Sequence to Sequence模型时发现把输入句子逆序输入做翻译效果会更好的小Trick的原因)。这就是为何说这个模型没有体现出注意力的缘由。这类似于你看到眼前的画面,但是没有注意焦点一样。如果拿机器翻译来解释这个分心模型的Encoder-Decoder框架更好理解,比如输入的是英文句子:Tom chase Jerry,Encoder-Decoder框架逐步生成中文单词:“汤姆”,“追逐”,“杰瑞”。在翻译“杰瑞”这个中文单词的时候,分心模型里面的每个英文单词对于翻译目标单词“杰瑞”贡献是相同的,很明显这里不太合理,显然“Jerry”对于翻译成“杰瑞”更重要,但是分心模型是无法体现这一点的,这就是为何说它没有引入注意力的原因。没有引入注意力的模型在输入句子比较短的时候估计问题不大,但是如果输入句子比较长,此时所有语义完全通过一个中间语义向量来表示,单词自身的信息已经消失,可想而知会丢失很多细节信息,这也是为何要引入注意力模型的重要原因。

上面的例子中,如果引入AM模型的话,应该在翻译“杰瑞”的时候,体现出英文单词对于翻译当前中文单词不同的影响程度,比如给出类似下面一个概率分布值:

(Tom,0.3)(Chase,0.2)(Jerry,0.5)

每个英文单词的概率代表了翻译当前单词“杰瑞”时,注意力分配模型分配给不同英文单词的注意力大小。这对于正确翻译目标语单词肯定是有帮助的,因为引入了新的信息。同理,目标句子中的每个单词都应该学会其对应的源语句子中单词的注意力分配概率信息。这意味着在生成每个单词Yi的时候,原先都是相同的中间语义表示C会替换成根据当前生成单词而不断变化的Ci。理解AM模型的关键就是这里,即由固定的中间语义表示C换成了根据当前输出单词来调整成加入注意力模型的变化的Ci。增加了AM模型的Encoder-Decoder框架理解起来如图2所示。

图2:引入AM模型的Encoder-Decoder框架

即生成目标句子单词的过程成了下面的形式:

而每个Ci可能对应着不同的源语句子单词的注意力分配概率分布,比如对于上面的英汉翻译来说,其对应的信息可能如下:

其中,f2函数代表Encoder对输入英文单词的某种变换函数,比如如果Encoder是用的RNN模型的话,这个f2函数的结果往往是某个时刻输入xi后隐层节点的状态值;g代表Encoder根据单词的中间表示合成整个句子中间语义表示的变换函数,一般的做法中,g函数就是对构成元素加权求和,也就是常常在论文里看到的下列公式:

假设Ci中那个i就是上面的“汤姆”,那么Tx就是3,代表输入句子的长度,h1=f(“Tom”),h2=f(“Chase”),h3=f(“Jerry”),对应的注意力模型权值分别是0.6,0.2,0.2,所以g函数就是个加权求和函数。如果形象表示的话,翻译中文单词“汤姆”的时候,数学公式对应的中间语义表示Ci的形成过程类似下图:

图3:Ci的形成过程

这里还有一个问题:生成目标句子某个单词,比如“汤姆”的时候,你怎么知道AM模型所需要的输入句子单词注意力分配概率分布值呢?就是说“汤姆”对应的概率分布:

(Tom,0.6)(Chase,0.2)(Jerry,0.2)

是如何得到的呢?

为了便于说明,我们假设对图1的非AM模型的Encoder-Decoder框架进行细化,Encoder采用RNN模型,Decoder也采用RNN模型,这是比较常见的一种模型配置,则图1的图转换为下图:

图4:RNN作为具体模型的Encoder-Decoder框架

那么用下图可以较为便捷地说明注意力分配概率分布值的通用计算过程:

图5:AM注意力分配概率计算

对于采用RNN的Decoder来说,如果要生成yi单词,在时刻i,我们是可以知道在生成Yi之前的隐层节点i时刻的输出值Hi的,而我们的目的是要计算生成Yi时的输入句子单词“Tom”、“Chase”、“Jerry”对Yi来说的注意力分配概率分布,那么可以用i时刻的隐层节点状态Hi去一一和输入句子中每个单词对应的RNN隐层节点状态hj进行对比,即通过函数F(hj,Hi)来获得目标单词Yi和每个输入单词对应的对齐可能性,这个F函数在不同论文里可能会采取不同的方法,然后函数F的输出经过Softmax进行归一化就得到了符合概率分布取值区间的注意力分配概率分布数值。图5显示的是当输出单词为“汤姆”时刻对应的输入句子单词的对齐概率。绝大多数AM模型都是采取上述的计算框架来计算注意力分配概率分布信息,区别只是在F的定义上可能有所不同。

上述内容就是论文里面常常提到的Soft Attention Model的基本思想,你能在文献里面看到的大多数AM模型基本就是这个模型,区别很可能只是把这个模型用来解决不同的应用问题。那么怎么理解AM模型的物理含义呢?一般文献里会把AM模型看作是单词对齐模型,这是非常有道理的。目标句子生成的每个单词对应输入句子单词的概率分布可以理解为输入句子单词和这个目标生成单词的对齐概率,这在机器翻译语境下是非常直观的:传统的统计机器翻译一般在做的过程中会专门有一个短语对齐的步骤,而注意力模型其实起的是相同的作用。在其他应用里面把AM模型理解成输入句子和目标句子单词之间的对齐概率也是很顺畅的想法。

当然,我觉得从概念上理解的话,把AM模型理解成影响力模型也是合理的,就是说生成目标单词的时候,输入句子每个单词对于生成这个单词有多大的影响程度。这种想法也是比较好理解AM模型物理意义的一种思维方式。

图6是论文“A Neural Attention Model for Sentence Summarization”中,Rush用AM模型来做生成式摘要给出的一个AM的一个非常直观的例子。

图6:句子生成式摘要例子

这个例子中,Encoder-Decoder框架的输入句子是:“russian defense minister ivanov called sunday for the creation of a joint front for combating global terrorism”。对应图中纵坐标的句子。系统生成的摘要句子是:“russia calls for joint front against terrorism”,对应图中横坐标的句子。可以看出模型已经把句子主体部分正确地抽出来了。矩阵中每一列代表生成的目标单词对应输入句子每个单词的AM分配概率,颜色越深代表分配到的概率越大。这个例子对于直观理解AM是很有帮助作用的。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • gpu
    gpu
    +关注

    关注

    28

    文章

    4969

    浏览量

    131720
  • 人工智能
    +关注

    关注

    1809

    文章

    49164

    浏览量

    250733
  • 深度学习
    +关注

    关注

    73

    文章

    5564

    浏览量

    122961

原文标题:自然语言处理中的Attention Model:是什么及为什么

文章出处:【微信号:Imgtec,微信公众号:Imagination Tech】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    如何优化自然语言处理模型的性能

    优化自然语言处理(NLP)模型的性能是一个多方面的任务,涉及数据预处理、特征工程、模型选择、模型调参、模型集成与融合等多个环节。以下是一些具体的优化策略: 一、数据预
    的头像 发表于 12-05 15:30 ?1756次阅读

    自然语言处理与机器学习的关系 自然语言处理的基本概念及步骤

    自然语言处理(Natural Language Processing,简称NLP)是人工智能和语言学领域的一个分支,它致力于研究如何让计算机能够理解、解释和生成人类
    的头像 发表于 12-05 15:21 ?2057次阅读

    语音识别与自然语言处理的关系

    人工智能的快速发展中,语音识别和自然语言处理(NLP)成为了两个重要的技术支柱。语音识别技术使得机器能够理解人类的语音,而自然语言处理则让
    的头像 发表于 11-26 09:21 ?1563次阅读

    什么是LLM?LLM自然语言处理中的应用

    所未有的精度和效率处理和生成自然语言。 LLM的基本原理 LLM基于深度学习技术,尤其是变换器(Transformer)架构。变换器模型因其自注意力(Self-Attention)机制
    的头像 发表于 11-19 15:32 ?3772次阅读

    ASR与自然语言处理的结合

    ASR(Automatic Speech Recognition,自动语音识别)与自然语言处理(NLP)是人工智能领域的两个重要分支,它们许多应用中紧密结合,共同构成了自然语言理解和
    的头像 发表于 11-18 15:19 ?1084次阅读

    卷积神经网络自然语言处理中的应用

    自然语言处理是人工智能领域的一个重要分支,它致力于使计算机能够理解、解释和生成人类语言。随着深度学习技术的发展,卷积神经网络(CNNs)作为
    的头像 发表于 11-15 14:58 ?858次阅读

    循环神经网络自然语言处理中的应用

    自然语言处理(NLP)是人工智能领域的一个重要分支,它致力于使计算机能够理解、解释和生成人类语言。随着深度学习技术的发展,循环神经网络(RN
    的头像 发表于 11-15 09:41 ?852次阅读

    使用LSTM神经网络处理自然语言处理任务

    自然语言处理(NLP)是人工智能领域的一个重要分支,它旨在使计算机能够理解、解释和生成人类语言。随着深度学习技术的发展,特别是循环神经网络(
    的头像 发表于 11-13 09:56 ?1230次阅读

    自然语言处理的未来发展趋势

    随着技术的进步,自然语言处理(NLP)已经成为人工智能领域的一个重要分支。NLP的目标是使计算机能够理解、解释和生成人类语言,这不仅涉及到语言的表层形式,还包括
    的头像 发表于 11-11 10:37 ?1789次阅读

    自然语言处理与机器学习的区别

    人工智能的快速发展中,自然语言处理(NLP)和机器学习(ML)成为了两个核心的研究领域。它们都致力于解决复杂的问题,但侧重点和应用场景有所
    的头像 发表于 11-11 10:35 ?1608次阅读

    自然语言处理的应用实例

    在当今数字化时代,自然语言处理(NLP)技术已经成为我们日常生活的一部分。从智能手机的语音助手到在线客服机器人,NLP技术的应用无处不在。 1. 语音识别与虚拟助手 随着Siri、Google
    的头像 发表于 11-11 10:31 ?1656次阅读

    使用LLM进行自然语言处理的优缺点

    自然语言处理(NLP)是人工智能和语言学领域的一个分支,它致力于使计算机能够理解、解释和生成人类语言。大型语言模型(LLM)是NLP领域的一
    的头像 发表于 11-08 09:27 ?2554次阅读

    Llama 3 自然语言处理中的优势

    自然语言处理(NLP)的快速发展中,我们见证了从基于规则的系统到基于机器学习的模型的转变。随着深度学习
    的头像 发表于 10-27 14:22 ?778次阅读

    GPU深度学习应用案例

    能力,可以显著提高图像识别模型的训练速度和准确性。例如,人脸识别、自动驾驶等领域,GPU被广泛应用于加速深度学习模型的训练和推理过程。 二、自然语言
    的头像 发表于 10-27 11:13 ?1492次阅读

    AI大模型自然语言处理中的应用

    AI大模型自然语言处理(NLP)中的应用广泛且深入,其强大的语义理解和生成能力为NLP任务带来了显著的性能提升。以下是对AI大模型NLP中应用的介绍: 一、核心应用 文本生成 AI
    的头像 发表于 10-23 14:38 ?1620次阅读