0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

功率器件热设计基础(三)——功率半导体壳温和散热器温度定义和测试方法

英飞凌工业半导体 ? 2024-11-05 08:02 ? 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

/ 前言 /

功率半导体热设计是实现IGBT、碳化硅SiC高功率密度的基础,只有掌握功率半导体的热设计基础知识,才能完成精确热设计,提高功率器件的利用率,降低系统成本,并保证系统的可靠性。

功率器件热设计基础系列文章会联系实际,比较系统地讲解热设计基础知识,相关标准和工程测量方法。

功率半导体模块壳温和散热器温度

功率模块的散热通路由芯片、DCB、铜基板、散热器和焊接层、导热脂层串联构成的。各层都有相应的热阻,这些热阻是串联的,总热阻等于各热阻之和,这是因为热量在传递过程中,需要依次克服每一个热阻,所以总热阻就是各热阻的累积。

33b95f1e-9b09-11ef-8084-92fbcf53809c.jpg

各芯片在导热通路上有多个导热层,在IEC 60747-15 Discrete semiconductor devices–15_Isolated power semiconductor devices按照设计的具体需要定义了壳温Tc和散热器温度Th,以及测试方法。

在损耗和热仿真时,基本的仿真总是针对单个IGBT或单个二极管,所以需要知道的壳温是指芯片正下方的温度,散热器温度也是指芯片正下方的温度。英飞凌数据手册就是这样定义的。

按照IEC 60747-15,具体测试方法为:

Tc:壳温是通过功率开关(芯片)下面穿透散热器以及热界面材料的小孔测量到的管壳温度Tc。

Ts(Th):散热器温度是通过止于散热器表面下方2mm±1mm(型式试验特征,应予规定)的规定的盲孔测量。

Tsx:散热器温度也可以取自距功率开关(芯片)最近的最热可触及点,但这壳温与英飞凌数据手册上的定义和测量方法不一致,这样的管壳温度可以作为设计也测量参考,需要的化,可以通过测量定标,建立与结温的函数关系。

33d5f656-9b09-11ef-8084-92fbcf53809c.jpg

为了测量Tc打了穿透散热器以及热界面材料的小孔,插入传感器会影响模块壳到散热器的热传递,好在有基板的模块,热会在基板上横向传导扩散,孔和探头对测量误差可以控制在5%水平。

注:在IEC 60747-15中的Rth(j-s),Rth(c-s)与本文中Rthjh和RthCH一致。

33dd2714-9b09-11ef-8084-92fbcf53809c.jpg

对于没有基板的模块,如英飞凌的Easy系列,DCB下表面的铜层很薄,热的横向传导非常有限,热传递的有效面积与芯片尺寸相当,打孔测壳温对模块散热影响就比较大,测量改变了工况,这样的测量不宜提倡。

33e0b3de-9b09-11ef-8084-92fbcf53809c.jpg

因此,对于这种没有基板的模块,热阻抗的参考温度为Ts(Th)而不再用TC,就是说直接定义RthJH,在数据手册里找不到RthJC和RthCH。

33e77caa-9b09-11ef-8084-92fbcf53809c.jpg

模块壳温的工程测量方法:

在芯片底部测壳温是型式试验方法,用于功率平台开发,而实际应用中,功率模块会自带NTC,负温度系数热敏电阻作为测温元件。

NTC安装在硅芯片的附近,以得到一个比较紧密的热耦合。根据模块的不同,NTC或者与硅芯片安装在同一块DCB上,或者安装在单独的基片上。

33fe3c6a-9b09-11ef-8084-92fbcf53809c.jpg

NTC测量值不是数据手册中定义热阻的壳温,需要按照经验进行修正,或进行散热定标。

热量可能传导路径的等效热路:

3401cb6e-9b09-11ef-8084-92fbcf53809c.jpg

经验法:

NTC可用于稳态过热保护,其时间常数大约是2秒。在数据手册上的瞬态热阻曲线上可以读到芯片的热时间常数,0.2秒左右,但是整个散热系统的时间常数却非常大,譬如在20秒左右,因此NTC可以检测较缓慢温度变化和缓慢过载情况,对短时结温过热保护是无能为力的,更不能用于短路保护。

我们可以有两个简单的说法:

1.由于连接芯片结到NTC的路径RthJNTC上有温度差,热敏电阻NTC的温度TNTC会比结温TJ来得低。

2.但NTC的温度会比散热器上测量的温度来得高。由经验可知,对于电力电子设备,散热器的温度和NTC的温度的差值约等于10K的温度左右。

340f4ef6-9b09-11ef-8084-92fbcf53809c.jpg

这方法仅用于估算,建议用下面的定标法和热仿真得到更精确的数值。

定标法:

对于结构设计完成的功率系统,我们可以测得芯片表面温度和在特定的散热条件下的Tvj~TNTC曲线,这曲线可以很好帮助你利用NTC在稳态条件下来监测芯片温度。具体方法参考《论文|如何通过IGBT模块内置的NTC电阻测量芯片结温》

下图就是摘自上述微信文章,被测器件是PrimePACK模块FF1000R17IE4 1000A/1700V,采用可调风速的风冷散热器。

芯片的温度用红外热成像仪测量,数据手册所定义的壳温用热电偶在芯片下方测量。NTC电阻值通过数据采集器记录,并且根据IGBT模块数据手册中的NTC阻值-温度曲线将电阻值转换成对应的温度值。

341e5c3e-9b09-11ef-8084-92fbcf53809c.jpg

单管管脚温度测量:

功率半导体单管,例如TO-247-3封装,其中心管脚是框架的一部分,在系统设计中往往测中心管脚温度作为壳温的参考,为此JEDEC即固态技术协会在1973年就发布了一份出版物《测量晶体管引线温度的推荐做法》,目前有效版本是2004年的JEP84A 。

342a39dc-9b09-11ef-8084-92fbcf53809c.jpg

JEP84A推荐做法包括:

1.建议的引线温度测量点为距离外壳1.5毫米处或制造商指定的位置,如图绿点位置;

2.热电偶测量时,必须注意热电偶与引线表面的牢固接触,建议采用焊接方式;

3.热电偶球的横截面积不得大于引线横截面积的二分之一,由于图示封装b3=2.87mm,所以热电偶不要超过1.4mm。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 散热器
    +关注

    关注

    2

    文章

    1091

    浏览量

    38734
  • 功率器件
    +关注

    关注

    42

    文章

    1947

    浏览量

    92980
  • 功率半导体
    +关注

    关注

    23

    文章

    1318

    浏览量

    44254
  • 热设计
    +关注

    关注

    11

    文章

    134

    浏览量

    27031
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    功率器件设计基础(一)——功率半导体

    文章会比较系统地讲解热设计基础知识,相关标准和工程测量方法散热功率半导体器件在开通和关断过程中和导通电流时会产生损耗,损失的能量会转化为热
    的头像 发表于 10-22 08:01 ?1828次阅读
    <b class='flag-5'>功率</b><b class='flag-5'>器件</b><b class='flag-5'>热</b>设计基础(一)——<b class='flag-5'>功率</b><b class='flag-5'>半导体</b>的<b class='flag-5'>热</b>阻

    功率器件设计基础(四)——功率半导体芯片温度测试方法

    功率半导体热设计是实现IGBT、碳化硅SiC高功率密度的基础,只有掌握功率半导体设计基础知识
    的头像 发表于 11-12 01:04 ?1670次阅读
    <b class='flag-5'>功率</b><b class='flag-5'>器件</b><b class='flag-5'>热</b>设计基础(四)——<b class='flag-5'>功率</b><b class='flag-5'>半导体</b>芯片<b class='flag-5'>温度</b>和<b class='flag-5'>测试</b><b class='flag-5'>方法</b>

    功率半导体器件应用手册

    过程中不损坏器件?一、怎样弯脚才能不影响器件的可靠性1、弯脚功率电路为保证散热效果往往安装有较大的散热器,而用户所得到的穿孔封装
    发表于 08-12 08:46

    IGBT模块散热器选择及使用原则

    的耗散功率器件阻、接触阻以及冷却介质温度来考虑。  2,
    发表于 06-20 14:33

    IGBT模块散热器的应用

      IGBT模块散热器的应用  随着电力电子技术的快速发展,以及当前电子设备对高性能、高可靠性、大功率器件的要求不断提高,单位体积内的耗散程度越来越高,导致发热量和
    发表于 06-20 14:58

    什么是基于SiC和GaN的功率半导体器件

    阻使这些材料成为高温和功率密度转换实现的理想选择 [4]。    为了充分利用这些技术,重要的是通过传导和开关损耗模型评估特定所需应用的可用半导体
    发表于 02-21 16:01

    半导体器件阻和散热器设计

    半导体器件阻和散热器设计 半导体器件阻:
    发表于 03-12 15:07 ?63次下载

    功率半导体激光器标准列阵单元及散热器的设计与制作

    摘要:对高功率半导体激光器的标准列阵单元及散热器进行了设计和制作.采用该标准列阵单元及散热器对不同占空比的二维半导体激光器列阵的
    发表于 11-23 21:21 ?27次下载

    功率半导体器件风冷散热器阻计算

    功率半导体器件风冷散热器阻计算方法
    发表于 04-28 14:35 ?44次下载

    功率器件设计及散热计算

    本文介绍了功率器件的热性能参数,并根据实际工作经验,阐述了功率器件设计方法
    发表于 06-20 10:56 ?14次下载

    探讨半导体散热器的原理和工作机制

    过程中会发热,这是由电流通过半导体产生的功耗引起的。如果不及时散热温度将会持续升高,超过器件能够承受的范围,可能导致性能下降、甚至损坏设备。因此,
    的头像 发表于 02-02 17:06 ?6264次阅读

    功率半导体器件功率循环测试与控制策略

    功率循环测试是一种功率半导体器件的可靠性测试方法,被
    的头像 发表于 10-09 18:11 ?1056次阅读
    <b class='flag-5'>功率</b><b class='flag-5'>半导体</b><b class='flag-5'>器件</b><b class='flag-5'>功率</b>循环<b class='flag-5'>测试</b>与控制策略

    功率器件设计基础(十)——功率半导体器件的结构函数

    系统的可靠性。功率器件设计基础系列文章会比较系统地讲解热设计基础知识,相关标准和工程测量方法。为什么引入结构函数?在功率
    的头像 发表于 12-23 17:31 ?1048次阅读
    <b class='flag-5'>功率</b><b class='flag-5'>器件</b><b class='flag-5'>热</b>设计基础(十)——<b class='flag-5'>功率</b><b class='flag-5'>半导体</b><b class='flag-5'>器件</b>的结构函数

    功率器件设计基础(十一)——功率半导体器件功率端子

    /前言/功率半导体热设计是实现IGBT、碳化硅SiC高功率密度的基础,只有掌握功率半导体设计
    的头像 发表于 01-06 17:05 ?838次阅读
    <b class='flag-5'>功率</b><b class='flag-5'>器件</b><b class='flag-5'>热</b>设计基础(十一)——<b class='flag-5'>功率</b><b class='flag-5'>半导体</b><b class='flag-5'>器件</b>的<b class='flag-5'>功率</b>端子

    功率器件设计基础(十二)——功率半导体器件的PCB设计

    /前言/功率半导体热设计是实现IGBT、碳化硅SiC高功率密度的基础,只有掌握功率半导体设计
    的头像 发表于 01-13 17:36 ?1109次阅读
    <b class='flag-5'>功率</b><b class='flag-5'>器件</b><b class='flag-5'>热</b>设计基础(十二)——<b class='flag-5'>功率</b><b class='flag-5'>半导体</b><b class='flag-5'>器件</b>的PCB设计