0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

科学家破解特殊的细胞 帮助折叠组织并在活组织外创造3D形状

IEEE电气电子工程师 ? 2018-01-19 14:57 ? 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

很多人介意3D打印器官 – 其实真正要实现的是让器官组织本身顺从于人的意志,UCSF科学家现在已经设法做到了这一点。他们发现他们可以“破解”特殊的细胞,帮助折叠组织(间质细胞)并在活组织外创造3D形状。其诀窍在于:按照“牵引”其他细胞的细胞外基质纤维上的特定模式布置这些细胞。你可以创造出令人惊讶的多样化的物品,从简单的碗和涟漪到像立方体和线圈这样的非常自然的物品。

目前还有很多工作要做。研究人员希望将他们的工作与其他发现结合到组织图案中,他们需要了解细胞如何响应这种折叠而改变。

但实际的影响已经很明显了。这可能使得实验室制造的器官,通过细胞自身的自然过程,被设计为确定的规格。您也有可能看到由大量活体材料而不是像橡胶这样的惰性物质创造出来的柔性机器人。想象一下,机器人可以生长是一件多么令人毛骨悚然的事情,但它也很大程度上扩大了医学和机械发展的可能性。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 3D打印
    +关注

    关注

    27

    文章

    3598

    浏览量

    112981

原文标题:科学家成功展现出活体组织的3D形状

文章出处:【微信号:IEEE_China,微信公众号:IEEE电气电子工程师】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    eFUSE内存是如何组织的?

    目前,我正在研究TRAVEO? 2G - CYT4EN。 我想了解一些与 eFUSE 相关的主题。 1. eFUSE 是控制器访问的物理芯片还是 SOC 的一部分? 2. eFUSE内存是如何组织
    发表于 07-30 07:07

    基于树莓派的工业级 3D 打印机!

    可靠、高性能的解决方案。解决方案树莓派计算模块4企业规模大型组织所属行业制造业Formlabs是一家美国公司,专注于3D打印机以及相关软件和材料的开发与制造。该公司
    的头像 发表于 06-29 08:22 ?352次阅读
    基于树莓派的工业级 <b class='flag-5'>3D</b> 打印机!

    地物光谱仪如何帮助科学家研究植被和土壤?

    在遥感、生态、农业等研究领域,科学家们常常会提到一个工具: 地物光谱仪 。它看起来像一台“测光的枪”,却能揭示土壤和植被的“隐藏信息”。那么,地物光谱仪到底是怎么工作的?它又是如何在科学研究中
    的头像 发表于 05-20 15:46 ?192次阅读
    地物光谱仪如何<b class='flag-5'>帮助</b><b class='flag-5'>科学家</b>研究植被和土壤?

    太赫兹细胞能量仪主控芯片方案单片机开发控制板布局规划

    太赫兹细胞理疗仪的工作原理及使用方法  太赫兹(THZ)是指频率在0.1一10THZ之间的电磁波,其波段是介于红外线和微波之间 ,太赫兹细胞理疗仪的光波产生频率达1THZ以上,穿透人体组织深达270
    发表于 03-25 15:37

    ?超景深3D检测显微镜技术解析

    为一个完整的三维模型。这种技术不仅提升了成像的精度,还大大扩展了显微镜的应用范围。 在材料科学领域,超景深3D检测显微镜为研究人员提供了观察材料微观结构的强大工具。例如,在纳米材料的研究中,科学家可以
    发表于 02-25 10:51

    SciChart 3D for WPF图表库

    SciChart 3D for WPF 是一个实时、高性能的 WPF 3D 图表库,专为金融、医疗和科学应用程序而设计。非常适合需要极致性能和丰富的交互式 3D 图表的项目。 使用我们
    的头像 发表于 01-23 13:49 ?698次阅读
    SciChart <b class='flag-5'>3D</b> for WPF图表库

    高分子微纳米功能复合材料3D打印加工介绍

    四川大学科学技术发展研究院最近公布了该校科研团队的一项3D打印成果:高分子微纳米功能复合材料实现规模化制备。据悉,功能复合材料3D打印成果由王琪、陈宁完成,目前处于实验室阶段,已授权发明专利12件
    的头像 发表于 01-22 11:13 ?622次阅读
    高分子微纳米功能复合材料<b class='flag-5'>3D</b>打印加工介绍

    腾讯混元3D AI创作引擎正式上线

    或上传一张图片,该引擎便能迅速生成与之对应的3D模型。这一功能极大地降低了3D内容创作的门槛,使得更多用户能够轻松涉足这一领域。 除了基础的3D模型生成功能,混元
    的头像 发表于 01-22 10:26 ?636次阅读

    深开鸿亮相“小小科学家”品牌发布暨科学探索研学营开营活动

    为在青少年中营造学科学、爱科学、用科学的浓厚氛围,1月14日,由市委组织部、市委教育工委、团市委共同主办的“小小科学家”品牌发布暨
    的头像 发表于 01-15 21:17 ?626次阅读
    深开鸿亮相“小小<b class='flag-5'>科学家</b>”品牌发布暨<b class='flag-5'>科学</b>探索研学营开营活动

    AI 推动未来科学 晶泰科技共襄未来科学大奖周

    科学家,探讨学科交叉与学术创新,倾力打造兼具权威性、专业性和国际影响力的科学盛会。 未来科学大奖由未来论坛于 2016 年创设,被誉为"中国诺贝尔奖"。未来论坛是当前中国极具声望的民间科学
    的头像 发表于 12-18 09:58 ?442次阅读
    AI 推动未来<b class='flag-5'>科学</b> 晶泰科技共襄未来<b class='flag-5'>科学</b>大奖周

    3D打印技术应用的未来

    3D打印技术作为一种革命性的制造技术,正逐渐改变着传统制造业的面貌。其通过数字化模型的逐层叠加,能够制造出复杂形状的物体,这种增材制造方式在多个领域展现出巨大的潜力和广泛的应用前景。 一、应用领域将
    的头像 发表于 10-25 09:28 ?1618次阅读

    细胞的“聚光灯”——前沿细胞成像的案例分享

    进行推测,但已经失“”的细胞已经无法反应新陈代谢、信号传导等生命活动,无法反应细胞的真实情况。因此
    的头像 发表于 10-24 08:04 ?855次阅读
    <b class='flag-5'>活</b><b class='flag-5'>细胞</b>的“聚光灯”——前沿<b class='flag-5'>活</b><b class='flag-5'>细胞</b>成像的案例分享

    使用拉曼光谱检测组织的恶性变化

    介绍 准确、快速、无创地检测和诊断组织中的恶性疾病是生物医学研究的重要目标。漫反射、荧光光谱和拉曼光谱等光学方法都已被研究作为实现这一目标的方法。漫反射利用组织的吸收和散射特性,特别是细胞核和基质
    的头像 发表于 10-17 06:32 ?533次阅读
    使用拉曼光谱检测<b class='flag-5'>组织</b>的恶性变化

    AI for Science:人工智能驱动科学创新》第4章-AI与生命科学读后感

    。 4. 对未来生命科学发展的展望 在阅读这一章后,我对未来生命科学的发展充满了期待。我相信,在人工智能技术的推动下,生命科学将取得更加显著的进展。例如,在药物研发领域,AI技术将帮助
    发表于 10-14 09:21

    ATA-7020高压放大器在微流控3D细胞微球培养中的应用

    本文将与大家分享,ATA-7020高压放大器在微流控3D细胞微球培养中的应用,希望能对各位工程师有所帮助与启发。 作为体外细胞培养模型,三维(3D
    的头像 发表于 10-09 11:54 ?577次阅读
    ATA-7020高压放大器在微流控<b class='flag-5'>3D</b><b class='flag-5'>细胞</b>微球培养中的应用